
Bipartite Graphs and their Applications
- English
- PDF
- Available on iOS & Android
Bipartite Graphs and their Applications
About this book
Bipartite graphs are perhaps the most basic of objects in graph theory, both from a theoretical and practical point of view. However, sometimes they have been considered only as a special class in some wider context. This book deals solely with bipartite graphs. Together with traditional material, the reader will also find many unusual results. Essentially all proofs are given in full; many of these have been streamlined specifically for this text. Numerous exercises of all standards have also been included. The theory is illustrated with many applications especially to problems in timetabling, chemistry, communication networks and computer science. For the most part the material is accessible to any reader with a graduate understanding of mathematics. However, the book contains advanced sections requiring much more specialized knowledge, which will be of interest to specialists in combinatorics and graph theory.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Title
- Copyright
- Contents
- Preface
- Notation
- Basic concepts
- Introduction to bipartite graphs
- Metric properties
- Connectivity
- Maximum matchings
- Expanding properties
- Subgraphs with restricted degrees
- Edge colourings
- Doubly stochastic matrices and bipartite graphs
- Coverings
- Some combinatorial applications
- Bipartite subgraphs of arbitrary graphs
- Appendix
- References
- Index