Stable Groups
About this book
The study of stable groups connects model theory, algebraic geometry and group theory. It analyses groups which possess a certain very general dependence relation (Shelah's notion of 'forking'), and tries to derive structural properties from this. These may be group-theoretic (nilpotency or solubility of a given group), algebro-geometric (identification of a group as an algebraic group), or model-theoretic (description of the definable sets). In this book, the general theory of stable groups is developed from the beginning (including a chapter on preliminaries in group theory and model theory), concentrating on the model- and group-theoretic aspects. It brings together the various extensions of the original finite rank theory under a unified perspective and provides a coherent exposition of the knowledge in the field.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Series Page
- Title
- Copyright
- Dedication
- Table of Contents
- Groups & Gist: Preface
- Groups & Gratitude: Acknowledgements
- Chapter 0 Groups & Goals
- Chapter 1 Groups & Generality
- Chapter 2 Groups & Genericity
- Chapter 3 Groups & Grandeur
- Chapter 4 Groups & Geometry
- Chapter 5 Groups & Grades
- Groups & Glory: References
- Groups & Gobbledegook: Index
