
Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems
- English
- PDF
- Available on iOS & Android
Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems
About this book
This book is an integrated approach to kinematic and dynamic analysis. The matrix techniques presented are general and fully applicable to two- or three-dimensional systems. They lend themselves to programming and digital computation and can act as the basis of a usable tool for designers. Techniques have broad applicability to the design analysis of all multibody mechanical systems. The more powerful and more flexible the approach, and the less specialisation and reprogramming required for each application, the better. The matrix methods presented have been developed using these ideas as primary goals. Matrix methods can be applied by hand to such problems as the slider-crank mechanism, but this is not the intent of this text, and often the rigor required for such an attempt becomes quite burdensome in comparison with other techniques. The matrix methods have been extensively tested, both in the classroom and in the world of engineering industry.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Contents
- Preface
- About the Authors
- 1 Concepts and Definitions
- 2 Topology and Kinematic Architecture
- 3 Transformation Matrices in Kinematics
- 4 Modeling Mechanisms and Multibody Systems with Transformation Matrices
- 5 Posture Analysis by Kinematic Equations
- 6 Differential Kinematics and Numeric Solution of Posture Equations
- 7 Velocity Analysis
- 8 Acceleration Analysis
- 9 Modeling Dynamic Aspects of Mechanisms and Multibody Systems
- 10 Dynamic Equations of Motion
- 11 Linearized Equations of Motion
- 12 Equilibrium Posture Analysis
- 13 Frequency Response of Mechanisms and Multibody Systems
- 14 Time Response of Mechanisms and Multibody Systems
- 15 Collision Detection
- 16 Impact Analysis
- 17 Constraint Force Analysis
- Index