
- English
- PDF
- Available on iOS & Android
About this book
Scientists have been debating the meaning of quantum mechanics for over a century. This book for graduate students and researchers gets to the root of the problem; the contextual nature of empirical truth, the laws of observation and how these impact on our understanding of quantum physics. Bridging the gap between non-relativistic quantum mechanics and quantum field theory, this novel approach to quantum mechanics extends the standard formalism to cover the observer and their apparatus. The author demystifies some of the aspects of quantum mechanics that have traditionally been regarded as extraordinary, such as wave-particle duality and quantum superposition, by emphasizing the scientific principles rather than the mathematical modelling involved. Including key experiments and worked examples throughout to encourage the reader to focus on empirically sound concepts, this book avoids metaphysical speculation and also alerts the reader to the use of computer algebra to explore quantum experiments of virtually limitless complexity.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Series information
- Title page
- Copyright information
- Table of contents
- Preface
- List of acronyms
- 1 Introduction
- 2 Questions and Answers
- 3 Classical Bits
- 4 Quantum Bits
- 5 Classical and Quantum Registers
- 6 Classical Register Mechanics
- 7 Quantum Register Dynamics
- 8 Partial Observations
- 9 Mixed States and POVMs
- 10 Double-Slit Experiments
- 11 Modules
- 12 Computerization and Computer Algebra
- 13 Interferometers
- 14 Quantum Eraser Experiments
- 15 Particle Decays
- 16 Nonlocality
- 17 Bell Inequalities
- 18 Change and Persistence
- 19 Temporal Correlations
- 20 The Franson Experiment
- 21 Self-intervening Networks
- 22 Separability and Entanglement
- 23 Causal Sets
- 24 Oscillators
- 25 Dynamical Theory of Observation
- 26 Conclusions
- Appendix
- References
- Index