
- English
- PDF
- Available on iOS & Android
Spectral Spaces
About this book
Spectral spaces are a class of topological spaces. They are a tool linking algebraic structures, in a very wide sense, with geometry. They were invented to give a functional representation of Boolean algebras and distributive lattices and subsequently gained great prominence as a consequence of Grothendieck's invention of schemes. There are more than 1, 000 research articles about spectral spaces, but this is the first monograph. It provides an introduction to the subject and is a unified treatment of results scattered across the literature, filling in gaps and showing the connections between different results. The book includes new research going beyond the existing literature, answering questions that naturally arise from this comprehensive approach. The authors serve graduates by starting gently with the basics. For experts, they lead them to the frontiers of current research, making this book a valuable reference source.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Series information
- Title page
- Copyright information
- Contents
- Preface
- An Outline of the History of Spectral Spaces
- 1 Spectral Spaces and Spectral Maps
- 2 Basic Constructions
- 3 Stone Duality
- 4 Subsets of Spectral Spaces
- 5 Properties of Spectral Maps
- 6 Quotient Constructions
- 7 Scott Topology and Coarse Lower Topology
- 8 Special Classes of Spectral Spaces
- 9 Localic Spaces
- 10 Colimits in Spec
- 11 Relations of Spec with Other Categories
- 12 The Zariski Spectrum
- 13 The Real Spectrum
- 14 Spectral Spaces via Model Theory
- Appendix: The Poset Zoo
- References
- Index of Categories and Functors
- Index of Examples
- Symbol Index
- Subject Index