
Semigroups of Linear Operators
With Applications to Analysis, Probability and Physics
- English
- PDF
- Available on iOS & Android
Semigroups of Linear Operators
With Applications to Analysis, Probability and Physics
About this book
The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of HilleāYosida and LumerāPhillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and FellerāMarkov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the RiemannāLiouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Series page
- Title page
- Copyright page
- Dedication
- Epigraph
- Contents
- Introduction
- 1 Semigroups and Generators
- 2 The Generation of Semigroups
- 3 Convolution Semigroups of Measures
- 4 Self-Adjoint Semigroups and Unitary Groups
- 5 Compact and Trace Class Semigroups
- 6 Perturbation Theory
- 7 Markov and Feller Semigroups
- 8 Semigroups and Dynamics
- 9 Varopoulos Semigroups
- Notes and Further Reading
- Appendix A The Space C[sub(0)](R[sup(d)])
- Appendix B The Fourier Transform
- Appendix C Sobolev Spaces
- Appendix D Probability Measures and Kolmogorov's Theorem on Construction of Stochastic Processes
- Appendix E Absolute Continuity, Conditional Expectation and Martingales
- Appendix F Stochastic Integration and ItƓ's Formula
- Appendix G Measures on Locally Compact Spaces ā Some Brief Remarks
- References
- Index