
- English
- PDF
- Available on iOS & Android
About this book
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Logicism, as put forward by Bertrand Russell, was predicated on a belief that all of mathematics can be deduced from a very small number of fundamental logical principles. In this volume, the twenty-third publication in the Lecture Notes in Logic series, Paul C. Gilmore revisits logicism in light of recent advances in mathematical logic and theoretical computer science. Gilmore addresses the need for languages which can be understood by both humans and computers and, using Intensional Type Theory (ITT), provides a unified basis for mathematics and computer science. This yields much simpler foundations for recursion theory and the semantics of computer programs than those currently provided by category theory.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Series information
- Title page
- Copyright information
- Table of contents
- Preface
- CHAPTER 1 ELEMENTARY LOGIC
- CHAPTER 2 TYPE THEORY
- CHAPTER 3 AN INTENSIONAL TYPE THEORY
- CHAPTER 4 RECURSIONS
- CHAPTER 5 CHOICE AND FUNCTION TERMS
- CHAPTER 6 INTUITIONIST LOGIC
- CHAPTER 7 LOGIC AND MATHEMATICS
- CHAPTER 8 LOGIC AND COMPUTER SCIENCE
- REFERENCES
- INDEX