
- English
- PDF
- Available on iOS & Android
About this book
The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA, facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Title
- Copyright
- Dedication
- Contents
- Preface
- Acronyms
- 1 Introduction
- 2 Machine Learning and Statistics Overview
- 3 Performance Measures I
- 4 Performance Measures II
- 5 Error Estimation
- 6 Statistical Significance Testing
- 7 Datasets and Experimental Framework
- 8 Recent Developments
- 9 Conclusion
- Appendix A: Statistical Tables
- Appendix B: Additional Information on the Data
- Appendix C: Two Case Studies
- Bibliography
- Index