
- English
- PDF
- Available on iOS & Android
Eigenspaces of Graphs
About this book
Current research on the spectral theory of finite graphs may be seen as part of a wider effort to forge closer links between algebra and combinatorics (in particular between linear algebra and graph theory).This book describes how this topic can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labelling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. One objective is to describe graphs by algebraic means as far as possible, and the book discusses the Ulam reconstruction conjecture and the graph isomorphism problem in this context. Further problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half Title
- Series Page
- Title
- Copyright
- Dedication
- Contents
- Preface
- Acknowledgements
- 1 A background in graph spectra
- 2 Eigenvectors of graphs
- 3 Eigenvector techniques
- 4 Graph angles
- 5 Angle techniques
- 6 Graph perturbations
- 7 Star partitions
- 8 Canonical star bases
- 9 Miscellaneous results
- Appendix A Some results from matrix theory
- Appendix B A table of graph angles
- Bibliography
- Index