
- English
- PDF
- Available on iOS & Android
Advanced Topics in Bisimulation and Coinduction
About this book
Coinduction is a method for specifying and reasoning about infinite data types and automata with infinite behaviour. In recent years, it has come to play an ever more important role in the theory of computing. It is studied in many disciplines, including process theory and concurrency, modal logic and automata theory. Typically, coinductive proofs demonstrate the equivalence of two objects by constructing a suitable bisimulation relation between them. This collection of surveys is aimed at both researchers and Master's students in computer science and mathematics and deals with various aspects of bisimulation and coinduction, with an emphasis on process theory. Seven chapters cover the following topics: history, algebra and coalgebra, algorithmics, logic, higher-order languages, enhancements of the bisimulation proof method, and probabilities. Exercises are also included to help the reader master new material.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Cambridge Tracts in Theoretical Computer Science 52
- Title
- Copyright
- Contents
- Contributors
- Preface
- 1 Origins of bisimulation and coinduction
- 2 An introduction to (co)algebra and (co)induction
- 3 The algorithmics of bisimilarity
- 4 Bisimulation and logic
- 5 Howe’s method for higher-order languages
- 6 Enhancements of the bisimulation proof method
- 7 Probabilistic bisimulation