
- English
- PDF
- Available on iOS & Android
Measurement Uncertainty and Probability
About this book
A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Contents
- Acknowledgements
- Introduction
- Part I Principles
- Part II Evaluation of uncertainty
- Part III Related topics
- Appendix A The weak law of large numbers
- Appendix B The Sleeping Beauty paradox
- Appendix C The sum of normal and uniform variates
- Appendix D Analysis with one Type A and one Type B error
- Appendix E Conservatism of treatment of Type A errors
- Appendix F An alternative to a symmetric beta distribution
- Appendix G Dimensions of the ellipsoidal confidence region
- Appendix H Derivation of the FeldmanāCousins interval
- References
- Index