A Pathway Into Number Theory
About this book
Number theory is concerned with the properties of the natural numbers: 1, 2, 3 … During the seventeenth and eighteenth centuries, number theory became established through the work of Fermat, Euler and Gauss. With the hand calculators and computers of today the results of extensive numerical work are instantly available and the road leading to their discoveries may be traversed with comparative care. Now in its second edition, this book consists of a sequence of exercises that will lead readers from quite simple number work to the point where they can prove algebraically the classical results of elementary number theory for themselves. A modern secondary school course in mathematics is sufficient background for the whole book which is designed to be used as an undergraduate course in number theory to be pursued by independent study without supporting lectures.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- A pathway into number theory
- Title
- Copyright
- CONTENTS
- PREFACE TO THE SECOND EDITION
- INTRODUCTION
- 1 The fundamental theorem of arithmetic
- 2 Modular addition and Euler's ø function
- 3 Modular multiplication
- 4 Quadratic residues
- 5 The equation xn + yn = zn, for n = 2, 3, 4
- 6 Sums of squares
- 7 Partitions
- 8 Quadratic forms
- 9 Geometry of numbers
- 10 Continued fractions
- 11 Approximation of irrationals by rationals
- BIBLIOGRAPHY
- INDEX
