
Multiscale Methods for Fredholm Integral Equations
- English
- PDF
- Available on iOS & Android
Multiscale Methods for Fredholm Integral Equations
About this book
The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Series information
- Title page
- Copyright information
- Table of contents
- Preface
- List of symbols
- Introduction
- 1 A review of the Fredholm approach
- 2 Fredholm equations and projection theory
- 3 Conventional numerical methods
- 4 Multiscale basis functions
- 5 Multiscale Galerkin methods
- 6 Multiscale PetrovāGalerkin methods
- 7 Multiscale collocation methods
- 8 Numerical integrations and error control
- 9 Fast solvers for discrete systems
- 10 Multiscale methods for nonlinear integral equations
- 11 Multiscale methods for ill-posed integral equations
- 12 Eigen-problems of weakly singular integral operators
- Appendix Basic results from functional analysis
- References
- Index