
- English
- PDF
- Available on iOS & Android
Computability in Analysis and Physics
About this book
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the first publication in the Perspectives in Logic series, Pour-El and Richards present the first graduate-level treatment of computable analysis within the tradition of classical mathematical reasoning. The book focuses on the computability or noncomputability of standard processes in analysis and physics. Topics include classical analysis, Hilbert and Banach spaces, bounded and unbounded linear operators, eigenvalues, eigenvectors, and equations of mathematical physics. The work is self-contained, and although it is intended primarily for logicians and analysts, it should also be of interest to researchers and graduate students in physics and computer science.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Series information
- Title page
- Copyright information
- Preface to the Series: Perspectives in Mathematical Logic
- Authors' Preface
- Table of Contents
- Major Interconnections
- Introduction
- Prerequisites from Logic and Analysis
- Part I. Computability in Classical Analysis
- Part II. The Computability Theory of Banach Spaces
- Part III. The Computability Theory of Eigenvalues and Eigenvectors
- Addendum: Open Problems
- Bibliography
- Subject Index