
- English
- PDF
- Available on iOS & Android
The Statistical Physics of Data Assimilation and Machine Learning
About this book
Data assimilation is a hugely important mathematical technique, relevant in fields as diverse as geophysics, data science, and neuroscience. This modern book provides an authoritative treatment of the field as it relates to several scientific disciplines, with a particular emphasis on recent developments from machine learning and its role in the optimisation of data assimilation. Underlying theory from statistical physics, such as path integrals and Monte Carlo methods, are developed in the text as a basis for data assimilation, and the author then explores examples from current multidisciplinary research such as the modelling of shallow water systems, ocean dynamics, and neuronal dynamics in the avian brain. The theory of data assimilation and machine learning is introduced in an accessible and unified manner, and the book is suitable for undergraduate and graduate students from science and engineering without specialized experience of statistical physics.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title Page
- Title Page
- Copyright Page
- Contents
- Preface
- 1 A Data Assimilation Reminder
- 2 Remembrance of Things Path
- 3 SDA Variational Principles
- 4 Using Waveform Information
- 5 Annealing in the Model Precision R[sub(f)]
- 6 Discrete Time Integration in Data Assimilation Variational Principles: Lagrangian and Hamiltonian Formulations
- 7 Monte Carlo Methods
- 8 Machine Learning and Its Equivalence to Statistical Data Assimilation
- 9 Two Examples of the Practical Use of Data Assimilation
- 10 Unfinished Business
- Bibliography
- Index