
- English
- PDF
- Available on iOS & Android
About this book
Chunyan Li is a course instructor with many years of experience in teaching about time series analysis. His book is essential for students and researchers in oceanography and other subjects in the Earth sciences, looking for a complete coverage of the theory and practice of time series data analysis using MATLAB. This textbook covers the topic's core theory in depth, and provides numerous instructional examples, many drawn directly from the author's own teaching experience, using data files, examples, and exercises. The book explores many concepts, including time; distance on Earth; wind, current, and wave data formats; finding a subset of ship-based data along planned or random transects; error propagation; Taylor series expansion for error estimates; the least squares method; base functions and linear independence of base functions; tidal harmonic analysis; Fourier series and the generalized Fourier transform; filtering techniques: sampling theorems: finite sampling effects; wavelet analysis; and EOF analysis.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Title page
- Copyright information
- Contents
- Preface
- Acknowledgments
- 1 Introduction
- 2 Introduction to MATLAB
- 3 Time and MATLAB Functions for Time
- 4 Deterministic and Random Functions
- 5 Error and Variability Propagation
- 6 Taylor Series Expansion and Application in Error Estimate
- 7 Spherical Trigonometry and Distance Computation
- 8 A System of Linear Equations and Least Squares Method
- 9 Base Functions and Linear Independence
- 10 Generic Least Squares Method and Orthogonal Functions
- 11 Harmonic Analysis of Tide
- 12 Fourier Series
- 13 Fourier Transform
- 14 Discrete Fourier Transform and Fast Fourier Transform
- 15 Properties of Fourier Transform
- 16 More Discussion on the Harmonic Analysis and Fourier Analysis
- 17 Effect of Finite Sampling
- 18 Power Spectrum, Cospectrum, and Coherence
- 19 Window Functions for Reducing Side Lobes
- 20 Convolution, Filtering with the Window Method
- 21 Digital Filters: FIR and IIR Filters
- 22 Rotary Spectrum Analysis
- 23 Short-Time Fourier Transform and Introduction to Wavelet Analysis
- 24 Empirical Orthogonal Function Analysis
- References
- Index