Computational Aerodynamics
About this book
Computational aerodynamics is a relatively new field in engineering that investigates aircraft flow fields via the simulation of fluid motion and sophisticated numerical algorithms. This book provides an excellent reference to the subject for a wide audience, from graduate students to experienced researchers and professionals in the aerospace engineering field. Opening with the essential elements of computational aerodynamics, the relevant mathematical methods of fluid flow and numerical methods for partial differential equations are presented. Stability theory and shock capturing schemes, and vicious flow and time integration methods are then comprehensively outlined. The final chapters treat more advanced material, including energy stability for nonlinear problems, and higher order methods for unstructured and structured meshes. Presenting over 150 illustrations, including representative calculations on unstructured meshes in color. This book is a rich source of information that will be of interest and importance in this pioneering field.
Tools to learn more effectively

Saving Books

Keyword Search

Annotating Text

Listen to it instead
Information
Table of contents
- Cover
- Half-title
- Series information
- Title page
- Copyright information
- Dedication
- Contents
- Preface
- Acknowledgments
- 1 Introduction and Background
- 2 Mathematical Models of Fluid Flow
- 3 Numerical Methods for the Solution of Partial Differential Equations
- 4 Fundamental Stability Theory
- 5 Shock Capturing Schemes I: Scalar Conservation Laws
- 6 Shock Capturing Schemes II: Systems of Equations and Gas Dynamics
- 7 Discretization Schemes for Flows in Complex Multi-dimensional Domains
- 8 The Calculation of Viscous flow
- 9 Overview of Time Integration Methods
- 10 Steady State Problems
- 11 Time-Accurate Methods for Unsteady Flow
- 12 Energy Stability for Nonlinear Problems
- 13 High order Methods for Structured Meshes
- 14 High Order Methods for Unstructured Meshes
- 15 Aerodynamic Shape Optimization
- Appendix A Vector and Function Spaces
- Appendix B Approximation Theory
- Appendix C Polynomial Interpolation, Differentiation, and Integration
- Appendix D Potential Flow Methods
- Appendix E Fundamental Stability Theory II
- Appendix F Turbulence Models
- References
- Index
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
