
- English
- PDF
- Available on iOS & Android
A First Course in Statistical Programming with R
About this book
This third edition of Braun and Murdoch's bestselling textbook now includes discussion of the use and design principles of the tidyverse packages in R, including expanded coverage of ggplot2, and R Markdown. The expanded simulation chapter introduces the Box–Muller and Metropolis–Hastings algorithms. New examples and exercises have been added throughout. This is the only introduction you'll need to start programming in R, the computing standard for analyzing data. This book comes with real R code that teaches the standards of the language. Unlike other introductory books on the R system, this book emphasizes portable programming skills that apply to most computing languages and techniques used to develop more complex projects. Solutions, datasets, and any errata are available from www.statprogr.science. Worked examples - from real applications - hundreds of exercises, and downloadable code, datasets, and solutions make a complete package for anyone working in or learning practical data science.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Title page
- Copyright information
- Contents
- Expanded contents
- Preface to the third edition
- Preface to the second edition
- Preface to the first edition
- 1 Getting started
- 2 Introduction to the R language
- 3 Programming statistical graphics
- 4 Programming with R
- 5 Complex programming in the tidyverse
- 6 Simulation
- 7 Computational linear algebra
- 8 Numerical optimization
- Appendix A Review of random variables and distributions
- Appendix B Base graphics details
- Index