Interpretable Machine Learning with Python
eBook - ePub

Interpretable Machine Learning with Python

Build explainable, fair, and robust high-performance models with hands-on, real-world examples

  1. 606 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Interpretable Machine Learning with Python

Build explainable, fair, and robust high-performance models with hands-on, real-world examples

About this book

A deep dive into the key aspects and challenges of machine learning interpretability using a comprehensive toolkit, including SHAP, feature importance, and causal inference, to build fairer, safer, and more reliable models.Purchase of the print or Kindle book includes a free eBook in PDF format.

Key Features

  • Interpret real-world data, including cardiovascular disease data and the COMPAS recidivism scores
  • Build your interpretability toolkit with global, local, model-agnostic, and model-specific methods
  • Analyze and extract insights from complex models from CNNs to BERT to time series models

Book Description

Interpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models.Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps.In addition to the step-by-step code, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability.By the end of the book, you'll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.

What you will learn

  • Progress from basic to advanced techniques, such as causal inference and quantifying uncertainty
  • Build your skillset from analyzing linear and logistic models to complex ones, such as CatBoost, CNNs, and NLP transformers
  • Use monotonic and interaction constraints to make fairer and safer models
  • Understand how to mitigate the influence of bias in datasets
  • Leverage sensitivity analysis factor prioritization and factor fixing for any model
  • Discover how to make models more reliable with adversarial robustness

Who this book is for

This book is for data scientists, machine learning developers, machine learning engineers, MLOps engineers, and data stewards who have an increasingly critical responsibility to explain how the artificial intelligence systems they develop work, their impact on decision making, and how they identify and manage bias. It's also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a good grasp of the Python programming language is needed to implement the examples.

]]>

Tools to learn more effectively

Saving Books

Saving Books

Keyword Search

Keyword Search

Annotating Text

Annotating Text

Listen to it instead

Listen to it instead

Table of contents

  1. Preface
  2. Interpretation, Interpretability, and Explainability; and Why Does It All Matter?
  3. Key Concepts of Interpretability
  4. Interpretation Challenges
  5. Global Model-Agnostic Interpretation Methods
  6. Local Model-Agnostic Interpretation Methods
  7. Anchors and Counterfactual Explanations
  8. Visualizing Convolutional Neural Networks
  9. Interpreting NLP Transformers
  10. Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis
  11. Feature Selection and Engineering for Interpretability
  12. Bias Mitigation and Causal Inference Methods
  13. Monotonic Constraints and Model Tuning for Interpretability
  14. Adversarial Robustness
  15. What’s Next for Machine Learning Interpretability?
  16. Other Books You May Enjoy
  17. Index

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn how to download books offline
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 990+ topics, we’ve got you covered! Learn about our mission
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more about Read Aloud
Yes! You can use the Perlego app on both iOS and Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
Yes, you can access Interpretable Machine Learning with Python by Serg Masís in PDF and/or ePUB format, as well as other popular books in Computer Science & Computer Science General. We have over one million books available in our catalogue for you to explore.