Machine Learning for Imbalanced Data
eBook - ePub

Machine Learning for Imbalanced Data

Tackle imbalanced datasets using machine learning and deep learning techniques

  1. 344 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Machine Learning for Imbalanced Data

Tackle imbalanced datasets using machine learning and deep learning techniques

About this book

Take your machine learning expertise to the next level with this essential guide, utilizing libraries like imbalanced-learn, PyTorch, scikit-learn, pandas, and NumPy to maximize model performance and tackle imbalanced data

Key Features

  • Understand how to use modern machine learning frameworks with detailed explanations, illustrations, and code samples
  • Learn cutting-edge deep learning techniques to overcome data imbalance
  • Explore different methods for dealing with skewed data in ML and DL applications
  • Purchase of the print or Kindle book includes a free eBook in the PDF format

Book Description

As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance.Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods.As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique.By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.

What you will learn

  • Use imbalanced data in your machine learning models effectively
  • Explore the metrics used when classes are imbalanced
  • Understand how and when to apply various sampling methods such as over-sampling and under-sampling
  • Apply data-based, algorithm-based, and hybrid approaches to deal with class imbalance
  • Combine and choose from various options for data balancing while avoiding common pitfalls
  • Understand the concepts of model calibration and threshold adjustment in the context of dealing with imbalanced datasets

Who this book is for

This book is for machine learning practitioners who want to effectively address the challenges of imbalanced datasets in their projects. Data scientists, machine learning engineers/scientists, research scientists/engineers, and data scientists/engineers will find this book helpful. Though complete beginners are welcome to read this book, some familiarity with core machine learning concepts will help readers maximize the benefits and insights gained from this comprehensive resource.

]]>

Tools to learn more effectively

Saving Books

Saving Books

Keyword Search

Keyword Search

Annotating Text

Annotating Text

Listen to it instead

Listen to it instead

Table of contents

  1. Machine Learning for Imbalanced Data
  2. Contributors
  3. Preface
  4. 1
  5. 2
  6. 3
  7. 4
  8. 5
  9. 6
  10. 7
  11. 8
  12. 9
  13. 10
  14. Appendix
  15. Assessments
  16. Index
  17. Other Books You May Enjoy

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn how to download books offline
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 990+ topics, we’ve got you covered! Learn about our mission
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more about Read Aloud
Yes! You can use the Perlego app on both iOS and Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
Yes, you can access Machine Learning for Imbalanced Data by Kumar Abhishek,Dr. Mounir Abdelaziz in PDF and/or ePUB format, as well as other popular books in Computer Science & Computer Science General. We have over one million books available in our catalogue for you to explore.