
- 416 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Spatial Linear Models for Environmental Data
About this book
Many applied researchers equate spatial statistics with prediction or mapping, but this book naturally extends linear models, which includes regression and ANOVA as pillars of applied statistics, to achieve a more comprehensive treatment of the analysis of spatially autocorrelated data. Spatial Linear Models for Environmental Data, aimed at students and professionals with a master's level training in statistics, presents a unique, applied, and thorough treatment of spatial linear models within a statistics framework. Two subfields, one called geostatistics and the other called areal or lattice models, are extensively covered. Zimmerman and Ver Hoef present topics clearly, using many examples and simulation studies to illustrate ideas. By mimicking their examples and R code, readers will be able to fit spatial linear models to their data and draw proper scientific conclusions.
Topics covered include:
- Exploratory methods for spatial data including outlier detection, (semi)variograms, Moran's I, and Geary's c.
- Ordinary and generalized least squares regression methods and their application to spatial data.
- Suitable parametric models for the mean and covariance structure of geostatistical and areal data.
- Model-fitting, including inference methods for explanatory variables and likelihood-based methods for covariance parameters.
- Practical use of spatial linear models including prediction (kriging), spatial sampling, and spatial design of experiments for solving real world problems.
All concepts are introduced in a natural order and illustrated throughout the book using four datasets. All analyses, tables, and figures are completely reproducible using open-source R code provided at a GitHub site. Exercises are given at the end of each chapter, with full solutions provided on an instructor's FTP site supplied by the publisher.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover Page
- Half-Title Page
- Series Page
- Title Page
- Copyright Page
- Dedication
- Contents
- Preface
- 1 Introduction
- 2 An Introduction to Covariance Structures for Spatial Linear Models
- 3 Exploratory Spatial Data Analysis
- 4 Provisional Estimation of the Mean Structure by Ordinary Least Squares
- 5 Generalized Least Squares Estimation of the Mean Structure
- 6 Parametric Covariance Structures for Geostatistical Models
- 7 Parametric Covariance Structures for Spatial-Weights Linear Models
- 8 Likelihood-Based Inference
- 9 Spatial Prediction
- 10 Spatial Sampling Design
- 11 Analysis and Design of Spatial Experiments
- 12 Extensions
- Appendix A: Some Matrix Results
- Bibliography
- Index