
Accelerate Model Training with PyTorch 2.X
Build more accurate models by boosting the model training process
- 230 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Accelerate Model Training with PyTorch 2.X
Build more accurate models by boosting the model training process
About this book
Dramatically accelerate the building process of complex models using PyTorch to extract the best performance from any computing environment
Key Features
- Reduce the model-building time by applying optimization techniques and approaches
- Harness the computing power of multiple devices and machines to boost the training process
- Focus on model quality by quickly evaluating different model configurations
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description
This book, written by an HPC expert with over 25 years of experience, guides you through enhancing model training performance using PyTorch. Here you'll learn how model complexity impacts training time and discover performance tuning levels to expedite the process, as well as utilize PyTorch features, specialized libraries, and efficient data pipelines to optimize training on CPUs and accelerators. You'll also reduce model complexity, adopt mixed precision, and harness the power of multicore systems and multi-GPU environments for distributed training. By the end, you'll be equipped with techniques and strategies to speed up training and focus on building stunning models.
What you will learn
- Compile the model to train it faster
- Use specialized libraries to optimize the training on the CPU
- Build a data pipeline to boost GPU execution
- Simplify the model through pruning and compression techniques
- Adopt automatic mixed precision without penalizing the model's accuracy
- Distribute the training step across multiple machines and devices
Who this book is for
This book is for intermediate-level data scientists who want to learn how to leverage PyTorch to speed up the training process of their machine learning models by employing a set of optimization strategies and techniques. To make the most of this book, familiarity with basic concepts of machine learning, PyTorch, and Python is essential. However, there is no obligation to have a prior understanding of distributed computing, accelerators, or multicore processors.
]]>
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Accelerate Model Training with PyTorch 2.X
- Foreword
- Preface
- Part 1: Paving the Way
- 1
- 2
- Part 2: Going Faster
- 3
- 4
- 5
- 6
- 7
- Part 3: Going Distributed
- 8
- 9
- 10
- 11
- Index
- Other Books You May Enjoy