Python Data Cleaning Cookbook
eBook - ePub

Python Data Cleaning Cookbook

Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

  1. 486 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Python Data Cleaning Cookbook

Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

About this book

Learn the intricacies of data description, issue identification, and practical problem-solving, armed with essential techniques and expert tips.

Key Features

  • Get to grips with new techniques for data preprocessing and cleaning for machine learning and NLP models
  • Use new and updated AI tools and techniques for data cleaning tasks
  • Clean, monitor, and validate large data volumes to diagnose problems using cutting-edge methodologies including Machine learning and AI

Book Description

Jumping into data analysis without proper data cleaning will certainly lead to incorrect results. The Python Data Cleaning Cookbook - Second Edition will show you tools and techniques for cleaning and handling data with Python for better outcomes.Fully updated to the latest version of Python and all relevant tools, this book will teach you how to manipulate and clean data to get it into a useful form. he current edition focuses on advanced techniques like machine learning and AI-specific approaches and tools for data cleaning along with the conventional ones. The book also delves into tips and techniques to process and clean data for ML, AI, and NLP models. You will learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Next, you'll cover recipes for using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors and generate visualizations for exploratory data analysis (EDA) to identify unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data.By the end of this Data Cleaning book, you'll know how to clean data and diagnose problems within it.

What you will learn

  • Using OpenAI tools for various data cleaning tasks
  • Producing summaries of the attributes of datasets, columns, and rows
  • Anticipating data-cleaning issues when importing tabular data into pandas
  • Applying validation techniques for imported tabular data
  • Improving your productivity in pandas by using method chaining
  • Recognizing and resolving common issues like dates and IDs
  • Setting up indexes to streamline data issue identification
  • Using data cleaning to prepare your data for ML and AI models

Who this book is for

This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data with practical examples.Working knowledge of Python programming is all you need to get the most out of the book.

]]>

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Python Data Cleaning Cookbook by Michael Walker in PDF and/or ePUB format, as well as other popular books in Computer Science & Data Warehousing. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Preface
  2. Anticipating Data Cleaning Issues When Importing Tabular Data with pandas
  3. Anticipating Data Cleaning Issues When Working with HTML, JSON, and Spark Data
  4. Taking the Measure of Your Data
  5. Identifying Outliers in Subsets of Data
  6. Using Visualizations for the Identification of Unexpected Values
  7. Cleaning and Exploring Data with Series Operations
  8. Identifying and Fixing Missing Values
  9. Encoding, Transforming, and Scaling Features
  10. Fixing Messy Data When Aggregating
  11. Addressing Data Issues When Combining DataFrames
  12. Tidying and Reshaping Data
  13. Automate Data Cleaning with User-Defined Functions, Classes, and Pipelines
  14. Index