Geometry and Topology in Music
  1. 124 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

About this book

This book introduces path-breaking applications of concepts from mathematical topology to music-theory topics including harmony, chord progressions, rhythm, and music classification. Contributions address topics of voice leading, Tonnetze (maps of notes and chords), and automatic music classification.

Focusing on some geometrical and topological aspects of the representation and formalisation of musical structures and processes, the book covers topological features of voice-leading geometries in the most recent advances in this mathematical approach to representing how chords are connected through the motion of voices, leading to analytically useful simplified models of high-dimensional spaces; It generalizes the idea of a Tonnetz, a geometrical map of tones or chords, and shows how topological aspects of these maps can correspond to many concepts from music theory. The resulting framework embeds the chord maps of neo-Riemannian theory in continuous spaces that relate chords of different sizes and includes extensions of this approach to rhythm theory. It further introduces an application of topology to automatic music classification, drawing upon both static topological representations and time-series evolution, showing how static and dynamic features of music interact as features of musical style.

This volume will be a key resource for academics, researchers, and advanced students of music, music analyses, music composition, mathematical music theory, computational musicology, and music informatics. It was originally published as a special issue of the Journal of Mathematics and Music.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Geometry and Topology in Music by Moreno Andreatta, Emmanuel Amiot, Jason Yust, Moreno Andreatta,Emmanuel Amiot,Jason Yust in PDF and/or ePUB format, as well as other popular books in Mathematics & Mathematical Analysis. We have over one million books available in our catalogue for you to explore.

Information

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. Citation Information
  7. Notes on Contributors
  8. Introduction
  9. 1 Why Topology?
  10. 2 Generalized Tonnetze and Zeitnetze, and the Topology of Music Concepts
  11. 3 Homological Persistence in Time Series: An Application to Music Classification
  12. Index