
- 314 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Statistical Prediction and Machine Learning
About this book
Written by an experienced statistics educator and two data scientists, this book unifies conventional statistical thinking and contemporary machine learning framework into a single overarching umbrella over data science. The book is designed to bridge the knowledge gap between conventional statistics and machine learning. It provides an accessible approach for readers with a basic statistics background to develop a mastery of machine learning. The book starts with elucidating examples in Chapter 1 and fundamentals on refined optimization in Chapter 2, which are followed by common supervised learning methods such as regressions, classification, support vector machines, tree algorithms, and range regressions. After a discussion on unsupervised learning methods, it includes a chapter on unsupervised learning and a chapter on statistical learning with data sequentially or simultaneously from multiple resources.
One of the distinct features of this book is the comprehensive coverage of the topics in statistical learning and medical applications. It summarizes the authors' teaching, research, and consulting experience in which they use data analytics. The illustrating examples and accompanying materials heavily emphasize understanding on data analysis, producing accurate interpretations, and discovering hidden assumptions associated with various methods.
Key Features:
- Unifies conventional model-based framework and contemporary data-driven methods into a single overarching umbrella over data science.
- Includes real-life medical applications in hypertension, stroke, diabetes, thrombolysis, aspirin efficacy.
- Integrates statistical theory with machine learning algorithms.
- Includes potential methodological developments in data science.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover Page
- Half-Title Page
- Title Page
- Copyright Page
- Dedication Page
- Contents
- Preface
- List of Figures
- List of Tables
- 1 Two Cultures in Data Science
- 2 Fundamental Instruments
- 3 Sensitivity and Specificity Trade-off
- 4 Bias and Variation Trade-off
- 5 Linear Prediction
- 6 Nonlinear Prediction
- 7 Minimum Risk Classification
- 8 Support Vectors and Duality Theorem
- 9 Decision Trees and Range Regressions
- 10 Unsupervised Learning and Optimization
- 11 Simultaneous Learning and Multiplicity
- Bibliography
- Index