
Statistical Modeling Using Local Gaussian Approximation
- 458 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Statistical Modeling Using Local Gaussian Approximation
About this book
Statistical Modeling using Local Gaussian Approximation extends powerful characteristics of the Gaussian distribution, perhaps, the most well-known and most used distribution in statistics, to a large class of non-Gaussian and nonlinear situations through local approximation. This extension enables the reader to follow new methods in assessing dependence and conditional dependence, in estimating probability and spectral density functions, and in discrimination. Chapters in this release cover Parametric, nonparametric, locally parametric, Dependence, Local Gaussian correlation and dependence, Local Gaussian correlation and the copula, Applications in finance, and more.Additional chapters explores Measuring dependence and testing for independence, Time series dependence and spectral analysis, Multivariate density estimation, Conditional density estimation, The local Gaussian partial correlation, Regression and conditional regression quantiles, and a A local Gaussian Fisher discriminant.- Reviews local dependence modeling with applications to time series and finance markets- Introduces new techniques for density estimation, conditional density estimation, and tests of conditional independence with applications in economics- Evaluates local spectral analysis, discovering hidden frequencies in extremes and hidden phase differences- Integrates textual content with three useful R packages
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Title of Book
- Cover image
- Title page
- Table of Contents
- Copyright
- Dedication
- Biography
- Preface
- Chapter 1 Introduction
- Chapter 2 Parametric, nonparametric, locally parametric
- Chapter 3 Dependence
- Chapter 4 Local Gaussian correlation and dependence
- Chapter 5 Local Gaussian correlation and the copula
- Chapter 6 Applications in finance
- Chapter 7 Measuring dependence and testing for independence
- Chapter 8 Time series dependence and spectral analysis
- Chapter 9 Multivariate density estimation
- Chapter 10 Conditional density estimation
- Chapter 11 The local Gaussian partial correlation
- Chapter 12 Regression and conditional regression quantiles
- Chapter 13 A local Gaussian Fisher discriminant
- Author index
- Subject index