
- 322 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
About this book
Thinking Machines: Machine Learning and Its Hardware Implementation covers the theory and application of machine learning, neuromorphic computing and neural networks. This is the first book that focuses on machine learning accelerators and hardware development for machine learning. It presents not only a summary of the latest trends and examples of machine learning hardware and basic knowledge of machine learning in general, but also the main issues involved in its implementation. Readers will learn what is required for the design of machine learning hardware for neuromorphic computing and/or neural networks.This is a recommended book for those who have basic knowledge of machine learning or those who want to learn more about the current trends of machine learning.
- Presents a clear understanding of various available machine learning hardware accelerator solutions that can be applied to selected machine learning algorithms
- Offers key insights into the development of hardware, from algorithms, software, logic circuits, to hardware accelerators
- Introduces the baseline characteristics of deep neural network models that should be treated by hardware as well
- Presents readers with a thorough review of past research and products, explaining how to design through ASIC and FPGA approaches for target machine learning models
- Surveys current trends and models in neuromorphic computing and neural network hardware architectures
- Outlines the strategy for advanced hardware development through the example of deep learning accelerators
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Thinking Machines by Shigeyuki Takano in PDF and/or ePUB format, as well as other popular books in Computer Science & Computer Science General. We have over one million books available in our catalogue for you to explore.
Information
Table of contents
- Title of Book
- Cover image
- Title page
- Table of Contents
- Copyright
- List of figures
- List of tables
- Biography
- Preface
- Acknowledgments
- Outline
- Chapter 1 Introduction
- Chapter 2 Traditional microarchitectures
- Chapter 3 Machine learning and its implementation
- Chapter 4 Applications, ASICs, and domain-specific architectures
- Chapter 5 Machine learning model development
- Chapter 6 Performance improvement methods
- Chapter 7 Case study of hardware implementation
- Chapter 8 Keys to hardware implementation
- Chapter 9 Conclusion
- Appendix A. Basics of deep learning
- Appendix B. Modeling of deep learning hardware
- Appendix C. Advanced network models
- Appendix D. National research and trends and investment
- Appendix E. Machine learning and social
- Bibliography
- Index