
Robustness of Statistical Tests
- 208 pages
- English
- PDF
- Available on iOS & Android
Robustness of Statistical Tests
About this book
Robustness of Statistical Tests provides a general, systematic finite sample theory of the robustness of tests and covers the application of this theory to some important testing problems commonly considered under normality. This eight-chapter text focuses on the robustness that is concerned with the exact robustness in which the distributional or optimal property that a test carries under a normal distribution holds exactly under a nonnormal distribution. Chapter 1 reviews the elliptically symmetric distributions and their properties, while Chapter 2 describes the representation theorem for the probability ration of a maximal invariant. Chapter 3 explores the basic concepts of three aspects of the robustness of tests, namely, null, nonnull, and optimality, as well as a theory providing methods to establish them. Chapter 4 discusses the applications of the general theory with the study of the robustness of the familiar Student's r-test and tests for serial correlation. This chapter also deals with robustness without invariance. Chapter 5 looks into the most useful and widely applied problems in multivariate testing, including the GMANOVA (General Multivariate Analysis of Variance). Chapters 6 and 7 tackle the robust tests for covariance structures, such as sphericity and independence and provide a detailed description of univariate and multivariate outlier problems. Chapter 8 presents some new robustness results, which deal with inference in two population problems. This book will prove useful to advance graduate mathematical statistics students.
Tools to learn more effectively

Saving Books

Keyword Search

Annotating Text

Listen to it instead
Information
Table of contents
- Front Cover
- Robustness of Statistical Tests
- Copyright Page
- Table of Contents
- Dedication
- Preface
- Introduction
- Chapter 1. Spherically Symmetric Distributions
- Chapter 2. Invariance Approach to Testing
- Chapter 3. General Approach to the Robustness of Tests
- Chapter 4. Robustness of t-Test and Tests for Serial Correlation
- Chapter 5. General Multivariate Analysis of Variance(GMANOVA)
- Chapter 6. Tests for Covariance Structures
- Chapter 7. Detection of Outliers
- Chapter 8. Two-Population Problems
- References
- Author Index
- Subject Index
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app