
- 310 pages
- English
- PDF
- Available on iOS & Android
Algebra of Proofs
About this book
Algebra of Proofs deals with algebraic properties of the proof theory of intuitionist first-order logic in a categorical setting. The presentation is based on the confluence of ideas and techniques from proof theory, category theory, and combinatory logic. The conceptual basis for the text is the Lindenbaum-Tarski algebras of formulas taken as categories. The formal proofs of the associated deductive systems determine structured categories as their canonical algebras (which are of the same type as the Lindenbaum-Tarski algebras of the formulas of underlying languages). Gentzen's theorem, which asserts that provable formulas code their own proofs, links the algebras of formulas and the corresponding algebras of formal proofs. The book utilizes the Gentzen's theorem and the reducibility relations with the Church-Rosser property as syntactic tools. The text explains two main types of theories with varying linguistic complexity and deductive strength: the monoidal type and the Cartesian type. It also shows that quantifiers fit smoothly into the calculus of adjoints and describe the topos-theoretical setting in which the proof theory of intuitionist first-order logic possesses a natural semantics. The text can benefit mathematicians, students, or professors of algebra and advanced mathematics.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Front Cover
- Algebra of Proofs
- Copyright Page
- Table of Contents
- Dedication
- PREFACE
- CHAPTER 1. INTRODUCTION
- CHAPTER 2. MONOIDAL CATEGORIES
- CHAPTER 3. SYMMETRIC MONOIDAL CATEGORIES
- CHAPTER 4. CARTESIAN CATEGORIES
- CHAPTER 5. BICARTESIAN CATEGORIES
- CHAPTER 6. DISTRIBUTIVE BICARTESIAN CATEGORIES
- CHAPTER 7. MONOIDAL CLOSED CATEGORIES
- CHAPTER 8. SYMMETRIC MONOIDAL CLOSED CATEGORIES
- CHAPTER 9. CARTESIAN CLOSED CATEGORIES
- CHAPTER 10. BICARTESIAN CLOSED CATEGORIES
- CHAPTER 11. RESIDUATED CATEGORIES
- CHAPTER 12. MONOIDAL BICLOSED CATEGORIES
- CHAPTER 13. QUANTIFIER-COMPLETE CATEGORIES
- APPENDIX A: THE LABELLED DEDUCTIVE SYSTEM Δ(Χ)
- APPENDIX B: THE UNLABELLED DEDUCTIVE SYSTEM Δ(Χ)
- APPENDIX C: THE CUT ELIMINATION ALGORITHM
- APPENDIX D: THE NORMALIZATION ALGORITHM
- BIBLIOGRAPHY
- INDEX OF SYMBOLS
- INDEX OF SUBJECTS