
- 526 pages
- English
- PDF
- Available on iOS & Android
Basic Real and Abstract Analysis
About this book
Basic Real and Abstract Analysis focuses on the processes, methodologies, and approaches involved in the process of abstraction of mathematical problems. The book first offers information on orientation and sets and spaces, including equivalent and infinite sets, metric spaces, cardinals, distance and relative properties, real numbers, and absolute value and inequalities. The text then takes a look at sequences and series and measure and integration. Topics include rings and additivity, Lebesgue integration, outer measures and measurability, extended real number system, sequences in metric spaces, and series of real numbers. The publication ponders on measure theory, continuity, derivatives, and Stieltjes integrals. Discussions focus on integrators of bounded variation, Lebesgue integral relations, exponents and logarithms, bounded variation, mean values, trigonometry, and Fourier series. The manuscript is a valuable reference for mathematicians and researchers interested in the process of abstraction of mathematical equations.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Front Cover
- Basic Real and Abstract Analysis
- Copyright Page
- Table of Contents
- Preface
- Chapter 1. ORIENTATION
- Chapter 2. SETS AND SPACES
- Chapter 3. SEQUENCES AND SERIES
- Chapter 4. MEASURE AND INTEGRATION
- Chapter 5. MEASURE THEORY
- Chapter 6. CONTINUITY
- Chapter 7. DERIVATIVES
- Chapter 8. STIELTJES INTEGRALS
- Bibliography
- Index