
Implementing Machine Learning for Finance
A Systematic Approach to Predictive Risk and Performance Analysis for Investment Portfolios
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Implementing Machine Learning for Finance
A Systematic Approach to Predictive Risk and Performance Analysis for Investment Portfolios
About this book
Bring together machine learning (ML) and deep learning (DL) in financial trading, with an emphasis on investment management. This book explains systematic approaches to investment portfolio management, risk analysis, and performance analysis, including predictive analytics using data science procedures.
The book introduces pattern recognition and future price forecasting that exerts effects on time series analysis models, such as the Autoregressive Integrated Moving Average (ARIMA) model, Seasonal ARIMA (SARIMA) model, and Additive model, and it covers the Least Squares model and the Long Short-Term Memory (LSTM) model. It presents hidden pattern recognition and market regime prediction applying the Gaussian Hidden Markov Model. The book covers the practical application of the K-Means model in stock clustering. It establishes the practical application of the Variance-Covariance method and Simulation method (using Monte Carlo Simulation) for value at risk estimation. It also includes market direction classification using both the Logistic classifier and the Multilayer Perceptron classifier. Finally, the book presents performance and risk analysis for investment portfolios.
By the end of this book, you should be able to explain how algorithmic trading works and its practical application in the real world, and know how to apply supervised and unsupervised ML and DL models to bolster investment decision making and implement and optimize investment strategies and systems. What You Will Learn
- Understand the fundamentals of the financial market and algorithmic trading, as well as supervised and unsupervised learning models that are appropriate for systematic investment portfolio management
- Know the concepts of feature engineering, data visualization, and hyperparameter optimization
- Design, build, and test supervised and unsupervised ML and DL models
- Discover seasonality, trends, and market regimes, simulating a change in the market and investment strategy problems and predicting market direction and prices
- Structure and optimize an investment portfolio with preeminent asset classes and measure the underlying risk
Who This Book Is For
Beginning and intermediate data scientists, machine learning engineers, business executives, and finance professionals (such as investment analysts and traders)
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Front Matter
- 1. Introduction to Financial Markets and Algorithmic Trading
- 2. Forecasting Using ARIMA, SARIMA, and the Additive Model
- 3. Univariate Time Series Using Recurrent Neural Nets
- 4. Discover Market Regimes
- 5. Stock Clustering
- 6. Future Price Prediction Using Linear Regression
- 7. Stock Market Simulation
- 8. Market Trend Classification Using ML and DL
- 9. Investment Portfolio and Risk Analysis
- Back Matter