Deep Graphical Models for Causality Analysis of Multivariate Time Series
eBook - PDF

Deep Graphical Models for Causality Analysis of Multivariate Time Series

Anomaly Detection, Attribution, and Environmental Science Applications

,
  1. 296 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Deep Graphical Models for Causality Analysis of Multivariate Time Series

Anomaly Detection, Attribution, and Environmental Science Applications

,

About this book

Die vorliegende Arbeit beschĂ€ftigt sich mit der Entwicklung und Anwendung tiefer grafischer Modelle zur KausalitĂ€tsanalyse, insbesondere in multivariaten Zeitreihen. Ein Schwerpunkt liegt dabei auf der BerĂŒcksichtigung versteckter Störfaktoren und der Analyse nichtlinearer ZusammenhĂ€nge.Durch die Integration von Expertenwissen und den Einsatz von Proxy-Variablen können komplexe kausale Strukturen in verrauschten Daten, die ĂŒber nichtlineare KausalverknĂŒpfungen miteinander verbunden sind und von versteckten Störfaktoren beeinflusst sind, aufgedeckt werden. Die entwickelten Methoden ermöglichen nicht nur die SchĂ€tzung der IntensitĂ€t kausaler ZusammenhĂ€nge, sondern auch die Detektion und Attribution von Anomalien in multivariaten Zeitreihen.Ein weiterer Beitrag dieser Arbeit ist die Entwicklung einer neuen datengetriebenen Methode zur Partitionierung des Netto-Ökosystem-Austauschs (engl. net ecosystem exchange). Durch die Anwendung eines tiefen Zustandsraummodells können die Tageswerte der Ökosystematmung geschĂ€tzt werden, was fĂŒr das VerstĂ€ndnis des Klimawandels von großer Bedeutung ist.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Deep Graphical Models for Causality Analysis of Multivariate Time Series by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

eBook ISBN
9783689520892
Edition
0

Table of contents

  1. Chapter 1 Introduction
  2. 1.1 From causation to causality
  3. 1.2 Domain knowledge integration
  4. 1.3 Probabilistic graphical models
  5. 1.4 Variational inference
  6. 1.5 Challenges
  7. 1.6 Contributions of this thesis
  8. Chapter 2 Theoretical prerequisites
  9. 2.1 Fundamental concepts and definitions
  10. 2.2 Knockoffs
  11. 2.3 Causal models
  12. 2.4 Artificial neural networks
  13. 2.5 Deep graphical models
  14. 2.6 Time series analysis and forecasting
  15. 2.7 Time series anomaly detection
  16. 2.8 Time series anomaly attribution
  17. 2.9 Model identification
  18. Chapter 3 A Deep State Space Model for Partitioning Net Ecosystem Exchange
  19. 3.1 Introduction and motivation
  20. 3.2 Related work
  21. 3.3 Partitioning NEE using a DeepState
  22. Chapter 4 Experiments for Partitioning Net Ecosystem Exchange
  23. 4.1 FLUXNET dataset
  24. 4.2 Learning a dynamical model of nighttime Reco
  25. 4.3 Evaluation of daytime Reco forecasts
  26. 4.4 Obtaining GPP
  27. Chapter 5 Time Series Anomaly Attributionusing Counterfactual Reasoning
  28. 5.1 Introduction and motivation
  29. 5.2 Related work
  30. 5.3 Detecting anomalous intervals
  31. 5.4 Counterfactual interval replacement
  32. Chapter 6 Experiments for Time Series Anomaly Attribution using Counterfactual Reasoning
  33. 6.2 Experimental setup and results
  34. Chapter 7 Nonlinear Causal Link Estimationunder Hidden Confounding
  35. 7.1 Introduction and motivation
  36. 7.2 Related work
  37. 7.3 Proposed methods
  38. Chapter 8 Experimental Evaluation ofCausal Link Estimation underHidden Confounding
  39. 8.1 Datasets
  40. 8.2 CCEVAE experiments
  41. 8.3 SCEVAE experiments
  42. Chapter 9 Conclusions
  43. 9.1 Summary and thesis contributions
  44. 9.2 Future work
  45. Appendix A Proof of Proposition 2.2.3
  46. Appendix B Additional attribution results
  47. Appendix C Causal link estimation
  48. Bibliography
  49. List of Own Publications
  50. List of Figures
  51. List of Tables
  52. Notation
  53. Acronyms