Structure-Preserving Numerical Approximations for a Port-Hamiltonian Formulation of the Non-Isothermal Euler Equations
eBook - PDF

Structure-Preserving Numerical Approximations for a Port-Hamiltonian Formulation of the Non-Isothermal Euler Equations

  1. 155 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Structure-Preserving Numerical Approximations for a Port-Hamiltonian Formulation of the Non-Isothermal Euler Equations

About this book

In this thesis we introduce infinite dimensional port-Hamiltonian formulations of a model library based on the compressible non-isothermal Euler equations to model pipe flow with temperature-dependence.Additionally, we set up the underlying Stokes-Dirac structures and deduce the boundary port variables. Following that, we adapt the structure-preserving semi-discretization for the isothermal Euler equations to the non-isothermal case. As these systems are highly non-linear we use the extended group finite element method to make the non-linearities easily manageable during model order and complexity reduction. These two procedures are necessary when simulating large networks of pipes in reasonable amounts of time. Thus, we deduce a structure-preserving model order reduction procedure for the single pipe system. Furthermore, we compare two complexity reduction procedures, i.e., the discrete empirical interpolation method and an empirical quadrature based ansatz, which is even structure-preserving. Finally, we introduce coupling conditions into our port-Hamiltonian formulations, such that the structure of the single pipes is preserved and the whole network system is port-Hamiltonian itself. As the port-Hamiltonian structure is preserved during coupling the numerical methods developed for the single pipe systems can be easily applied to the network case. Academic numerical examples will support our analytical findings.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Structure-Preserving Numerical Approximations for a Port-Hamiltonian Formulation of the Non-Isothermal Euler Equations by Sarah-Alexa Hauschild in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Shaker
Year
2024
eBook ISBN
9783844095920
Edition
0

Table of contents