Driving Safety of Electric Vehicles with Unconventional Service Brake Topology
eBook - PDF

Driving Safety of Electric Vehicles with Unconventional Service Brake Topology

  1. 168 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Driving Safety of Electric Vehicles with Unconventional Service Brake Topology

About this book

The increasing market share of electric vehicles (EVs) leads to novel questions regarding brake system design. To maximise efficiency and cover strict particulate emission standards, a novel and disruptive braking system concept could be beneficial, in which the conventional friction brakes of the rear axle are replaced by a central axle brake module integrated into the driveline. This arrangement eliminates wheel-individual service brake intervention on the rear axle, which are generally used for electronic stability control (ESC). This thesis discusses the driving dynamics potentials and challenges of such a system.To demonstrate the lateral dynamics potential of the new brake system topology, a proposal for a dedicated vehicle dynamics controller (VDC) is introduced into a software-in-the-loop simulation environment. The investigations on lateral dynamics identify certain limitations in under- and over-steering-critical situations. Performance degradations during braking and acceleration on inhomogeneous (µ-split) surface are also discussed. Especially the acceleration case represents a clear physical limitation that can only be solved by bespoke hardware measures, e.g. limited slip differentials (LSDs).This work puts special emphasis on the development of a methodology for the assessment and selection of passive LSDs. It extends known approaches for the quantification of driving dynamics properties such as the Milliken-Moment-Method, but also considers the impact of LSDs in daily driving conditions. As an alternative, a novel parking brake concept is presented that combines conventional parking brake functionality but also supports climbing ability on µ-split. This multi-disc brake concept is mounted on the differential housing and is acting on the axle shafts.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Driving Safety of Electric Vehicles with Unconventional Service Brake Topology by Tobias Loss in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Shaker
Year
2024
eBook ISBN
9783844095623
Edition
0

Table of contents

  1. Abstract
  2. Kurzfassung
  3. Acknowledgments
  4. List of Frequently Used Symbols
  5. 1 Introduction
  6. 2 Analysis of State of the Art 4-Channel VDC Vehicles
  7. 3 Vehicle Dynamics with Axle Central Brake Torque Generation
  8. 4 Effects of Differential Gearboxes
  9. 5 Parking Brake Concept Development
  10. 6 Discussion
  11. 7 Conclusion
  12. A Appendix
  13. Bibliography
  14. Curriculum Vitae