Measure Theory and Fine Properties of Functions
eBook - ePub

Measure Theory and Fine Properties of Functions

  1. 344 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Measure Theory and Fine Properties of Functions

About this book

This popular textbook provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space, with emphasis upon the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions.

Measure Theory and Fine Properties of Functions, Second Edition includes many interesting items working mathematical analysts need to know, but are rarely taught. Topics covered include a review of abstract measure theory, including Besicovitch's covering theorem, Rademacher's theorem (on the differentiability a.e. of Lipschitz continuous functions), the area and coarea formulas, the precise structure of Sobolev and BV functions, the precise structure of sets of finite perimeter, and Aleksandrov's theorem (on the twice differentiability a.e. of convex functions).

The topics are carefully selected, and the proofs are succinct, but complete. This book provides ideal reading for mathematicians and graduate students in pure and applied mathematics. The authors assume readers are at least fairly conversant with both Lebesgue measure and abstract measure theory, and the expository style reflects this expectation. The book does not offer lengthy heuristics or motivation, but as compensation presents all the technicalities of the proofs.

This new Second Edition has been updated to provide corrections and minor edits from the previous Revised Edition, with countless improvements in notation, format and clarity of exposition. Also new is a section on the sub differentials of convex functions, and in addition the bibliography has been updated.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Measure Theory and Fine Properties of Functions by Lawrence Craig Evans,Lawrence C. Evans in PDF and/or ePUB format, as well as other popular books in Mathematics & Mathematical Analysis. We have over one million books available in our catalogue for you to explore.

Information

Table of contents

  1. Cover Page
  2. Half-Title Page
  3. Series Page
  4. Title Page
  5. Copyright Page
  6. Contents
  7. Preface
  8. Preface to Second Edition
  9. 1 Measure Theory
  10. 2 Hausdorff Measures
  11. 3 Area and Coarea Formulas
  12. 4 Sobolev Functions
  13. 5 Functions of Bounded Variation, Sets of Finite Perimeter
  14. 6 Differentiability, Approximation by C1   Functions
  15. Bibliography
  16. Notation
  17. Index