Sustainable Supercapacitors
eBook - PDF

Sustainable Supercapacitors

Next-Generation of Green Energy Storage Devices

  1. English
  2. PDF
  3. Available on iOS & Android
eBook - PDF

Sustainable Supercapacitors

Next-Generation of Green Energy Storage Devices

About this book

This unique book provides an in-depth and systematic description of an integrated approach for innovative functionalized nanomaterials, interfaces, and sustainable supercapacitor fabrication platforms.

The requirement for energy-storing devices that can handle the necessary power for modern day electronic systems and the miniaturization of electronic devices, has sparked the evolution of energy-storing devices in their most portable forms. Integration of mini- or micro-powering devices with tiny electronic devices has led to the simultaneous evolution of nanomaterials and, correspondingly, nanotechnology. The nanotechnology evolution has provided the control and ability to restructure matter at the atomic and molecular levels on a scale of l-100 nm. Nanotechnology primarily aims to create materials, devices, and systems that exhibit fundamentally new properties and functions. As such, nanotechnology and functionalized nanomaterials have proven to be the ultimate frontier in the production of novel materials that have manufacturing longevity and cost-efficiency.

The integration of nanotechnology to produce functionalized nanomaterials and energy storage from electrochemical principles has established a new platform for science and technology. The integration of two technologies does not compromise their fundamentals and principles, but instead results in novel and high-performance supercapacitors.

This book consists of 11 chapters that review state-of-the-art technologies detailing:

  • the developments in flexible fabric-type energy storage devices as well as hybrid fabrics for energy storage and harvesting in flexible wearable electronics;
  • the role of electrolytes in the development of sustainable supercapacitors and the performance optimizations associated with them;
  • green supercapacitors as sustainable energy storage devices;
  • the materials used in sustainable supercapacitors, such as novel transition metal oxides, metal-organic frameworks, conductive polymers, and biomass-based, as well as their composites (binary and ternary);
  • a discussion on the significance of material selection, emphasizing the properties and characteristics required for sustainable electrode materials;
  • how supercapacitors, ultracapacitors, and electrostatic double-layer capacitors (EDLC) offer a more significant transient response, power density, low weight, low volume, and low internal resistance, making them suitable for several applications;
  • how sustainable supercapacitors have steadily gained traction due to their potential for non-invasive health monitoring.

Audience
The book is ideal for a broad audience working in the fields of electrochemical sensors, analytical chemistry, chemistry and chemical engineering, materials science, nanotechnology, energy, environment, green chemistry, sustainability, electrical and electronic engineering, solid-state physics, surface science, device engineering and technology, etc. It will also be an invaluable reference source for libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in supercapacitors.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Sustainable Supercapacitors by Basheer Ahamed,Chaudhery Mustansar Hussain in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Nanotechnology & MEMS. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Cover
  2. Series Page
  3. Title Page
  4. Copyright Page
  5. Contents
  6. Preface
  7. Chapter 1 Flexible Sustainable Supercapacitors
  8. Chapter 2 Role of Electrolytes in Sustainable Supercapacitors
  9. Chapter 3 Green Supercapacitors
  10. Chapter 4 Materials for Sustainable Supercapacitors
  11. Chapter 5 Role of Material Selection and Fabrication Approach in the Performance of Sustainable Supercapacitors
  12. Chapter 6 Electronics and Communication Applications
  13. Chapter 7 Energy Storage Breakthroughs: Supercapacitors in Healthcare Applications
  14. Chapter 8 Recent Trends in the Development of Sustainable Supercapacitors
  15. Chapter 9 Cyclic Stability and Capacitance Retention of MXene-Based Supercapacitors
  16. Chapter 10 Current Status of Sustainable Supercapacitors
  17. Chapter 11 Future Perspective of Sustainable Supercapacitors
  18. Index
  19. EULA