
- 672 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Statistics Slam Dunk
About this book
Learn statistics by analyzing professional basketball data! In this action-packed book, you'll build your skills in exploratory data analysis by digging into the fascinating world of NBA games and player stats using the R language. Statistics Slam Dunk is an engaging how-to guide for statistical analysis with R. Each chapter contains an end-to-end data science or statistics project delving into NBA data and revealing real-world sporting insights. Written by a former basketball player turned business intelligence and analytics leader, you'll get practical experience tidying, wrangling, exploring, testing, modeling, and otherwise analyzing data with the best and latest R packages and functions. In Statistics Slam Dunk you'll develop a toolbox of R programming skills including:
- Reading and writing data
- Installing and loading packages
- Transforming, tidying, and wrangling data
- Applying best-in-class exploratory data analysis techniques
- Creating compelling visualizations
- Developing supervised and unsupervised machine learning algorithms
- Executing hypothesis tests, including t-tests and chi-square tests for independence
- Computing expected values, Gini coefficients, z-scores, and other measures
If you're looking to switch to R from another language, or trade base R for tidyverse functions, this book is the perfect training coach. Much more than a beginner's guide, it teaches statistics and data science methods that have tons of use cases. And just like in the real world, you'll get no clean pre-packaged data sets in Statistics Slam Dunk. You'll take on the challenge of wrangling messy data to drill on the skills that will make you the star player on any data team. Foreword by Thomas W. Miller. About the technology Statistics Slam Dunk is a data science manual with a difference. Each chapter is a complete, self-contained statistics or data science project for you to work through—from importing data, to wrangling it, testing it, visualizing it, and modeling it. Throughout the book, you'll work exclusively with NBA data sets and the R language, applying best-in-class statistics techniques to reveal fun and fascinating truths about the NBA. About the book Is losing basketball games on purpose a rational strategy? Which hustle statistics have an impact on wins and losses? Does spending more on player salaries translate into a winning record? You'll answer all these questions and more. Plus, R's visualization capabilities shine through in the book's 300 plots and charts, including Pareto charts, Sankey diagrams, Cleveland dot plots, and dendrograms. About the reader For readers who know basic statistics. No advanced knowledge of R—or basketball—required. About the author Gary Sutton is a former basketball player who has built and led high-performing business intelligence and analytics organizations across multiple verticals. Table of Contents 1 Getting started
2 Exploring data
3 Segmentation analysis
4 Constrained optimization
5 Regression models
6 More wrangling and visualizing data
7 T-testing and effect size testing
8 Optimal stopping
9 Chi-square testing and more effect size testing
10 Doing more with ggplot2
11 K-means clustering
12 Computing and plotting inequality
13 More with Gini coefficients and Lorenz curves
14 Intermediate and advanced modeling
15 The Lindy effect
16 Randomness versus causality
17 Collective intelligence
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- inside front cover
- Statistics Salm Dunk
- Copyright
- contents
- front matter
- 1 Getting started
- 2 Exploring data
- 3 Segmentation analysis
- 4 Constrained optimization
- 5 Regression models
- 6 More wrangling and visualizing data
- 7 T-testing and effect size testing
- 8 Optimal stopping
- 9 Chi-square testing and more effect size testing
- 10 Doing more with ggplot2
- 11 K-means clustering
- 12 Computing and plotting inequality
- 13 More with Gini coefficients and Lorenz curves
- 14 Intermediate and advanced modeling
- 15 The Lindy effect
- 16 Randomness versus causality
- 17 Collective intelligence
- 18 Statistical dispersion methods
- 19 Data standardization
- 20 Finishing up
- Appendix More ggplot2 visualizations
- index
- inside back cover