Optimization Algorithms
eBook - ePub

Optimization Algorithms

AI techniques for design, planning, and control problems

  1. 536 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Optimization Algorithms

AI techniques for design, planning, and control problems

About this book

Solve design, planning, and control problems using modern AI techniques. Optimization problems are everywhere in daily life. What's the fastest route from one place to another? How do you calculate the optimal price for a product? How should you plant crops, allocate resources, and schedule surgeries? Optimization Algorithms introduces the AI algorithms that can solve these complex and poorly-structured problems. In Optimization Algorithms: AI techniques for design, planning, and control problems you will learn: • The core concepts of search and optimization
• Deterministic and stochastic optimization techniques
• Graph search algorithms
• Trajectory-based optimization algorithms
• Evolutionary computing algorithms
• Swarm intelligence algorithms
• Machine learning methods for search and optimization problems
• Efficient trade-offs between search space exploration and exploitation
• State-of-the-art Python libraries for search and optimization Inside this comprehensive guide, you'll find a wide range of optimization methods, from deterministic search algorithms to stochastic derivative-free metaheuristic algorithms and machine learning methods. Don't worry—there's no complex mathematical notation. You'll learn through in-depth case studies that cut through academic complexity to demonstrate how each algorithm works in the real world. Plus, get hands-on experience with practical exercises to optimize and scale the performance of each algorithm. About the technology Every time you call for a rideshare, order food delivery, book a flight, or schedule a hospital appointment, an algorithm works behind the scenes to find the optimal result. Blending modern AI methods with classical search and optimization techniques can deliver incredible results, especially for the messy problems you encounter in the real world. This book shows you how. About the book Optimization Algorithms explains in clear language how optimization algorithms work and what you can do with them. This engaging book goes beyond toy examples, presenting detailed scenarios that use actual industry data and cutting-edge AI techniques. You will learn how to apply modern optimization algorithms to real-world problems like pricing products, matching supply with demand, balancing assembly lines, tuning parameters, coordinating mobile networks, and cracking smart mobility challenges. What's inside • Graph search algorithms
• Metaheuristic algorithms
• Machine learning methods
• State-of-the-art Python libraries for optimization
• Efficient trade-offs between search space exploration and exploitation About the reader Requires intermediate Python and machine learning skills. About the author Dr. Alaa Khamis is an AI and smart mobility technical leader at General Motors and a lecturer at the University of Toronto. The technical editor on this book was Frances Buontempo. Table of Contents PART 1
1 Introduction to search and optimization
2 A deeper look at search and optimization
3 Blind search algorithms
4 Informed search algorithms
PART 2
5 Simulated annealing
6 Tabu search
PART 3
7 Genetic algorithms
8 Genetic algorithm variants
PART 4
9 Particle swarm optimization
10 Other swarm intelligence algorithms to explore
PART 5
11 Supervised and unsupervised learning
12 Reinforcement learning
Appendix A
Appendix B
Appendix C

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Optimization Algorithms by Alaa Khamis in PDF and/or ePUB format, as well as other popular books in Computer Science & Artificial Intelligence (AI) & Semantics. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Optimization Algorithms
  2. Copyright
  3. dedication
  4. contents
  5. front matter
  6. Part 1. Deterministic search algorithms
  7. 1 Introduction to search and optimization
  8. 2 A deeper look at search and optimization
  9. 3 Blind search algorithms
  10. 4 Informed search algorithms
  11. Part 2. Trajectory-based algorithms
  12. 5 Simulated annealing
  13. 6 Tabu search
  14. Part 3. Evolutionary computing algorithms
  15. 7 Genetic algorithms
  16. 8 Genetic algorithm variants
  17. Part 4. Swarm intelligence algorithms
  18. 9 Particle swarm optimization
  19. 10 Other swarm intelligence algorithms to explore
  20. Part 5. Machine learning-based methods
  21. 11 Supervised and unsupervised learning
  22. 12 Reinforcement learning
  23. Appendix A. Search and optimization libraries in Python
  24. Appendix B. Benchmarks and datasets
  25. Appendix C. Exercises and solutions
  26. references
  27. index