About this book
ALGEBRAIC TOPOLOGY: An Introduction starts with the combinatorial definition of simplicial (co) homology and its main properties (including duality for homology manifolds). Then the geometrical facet of (co) homology via bordism theory is sketched and it is shown that the corresponding theory for pseudomanifolds coincides with the homology obtained from the singular chain complex. The classical applications of (co) homology theory are included. Degree and fixed-point theory are presented with their extensions to infinite dimensional spaces. The book also contains a geometric approach to the Hurewicz theorem relating homology and homotopy. The last chapter exploits the algebraic invariants introduced in the book to give in detail the homotopical classification of the three-dimensional lens spaces. Each chapter concludes with a generous list of exercises and problems; many of them contain hints for their solution. Some groups of problems introduce a topic not included in the basic core of the book.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Title page
- Full title
- Copyright
- Preface
- Introduction
- Contents
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Chapter 8
- Chapter 9
- Chapter 10
- Chapter 11
- Chapter 13
- Chapter 14
- Chapter 15
- Appendices
- Bibliography
- Index
