
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
Modern Methods for Robust Regression
About this book
Modern Methods for Robust Regression offers a brief but in-depth treatment of various methods for detecting and properly handling influential cases in regression analysis. This volume, geared toward both future and practicing social scientists, is unique in that it takes an applied approach and offers readers empirical examples to illustrate key concepts. It is ideal for readers who are interested in the issues related to outliers and influential cases.
Key Features
- Defines key terms necessary to understanding the robustness of an estimator: Because they form the basis of robust regression techniques, the book also deals with various measures of location and scale.
- Addresses the robustness of validity and efficiency: After having described the robustness of validity for an estimator, the author discusses its efficiency.
- Focuses on the impact of outliers: The book compares the robustness of a wide variety of estimators that attempt to limit the influence of unusual observations.
- Gives an overview of some traditional techniques: Both formal statistical tests and graphical methods detect influential cases in the general linear model.
- Offers a Web appendix: This volume provides readers with the data and the R code for the examples used in the book.
Intended Audience
This is an excellent text for intermediate and advanced Quantitative Methods and Statistics courses offered at the graduate level across the social sciences.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Modern Methods for Robust Regression by Robert Andersen in PDF and/or ePUB format, as well as other popular books in Social Sciences & Social Science Research & Methodology. We have over one million books available in our catalogue for you to explore.
Information
Table of contents
- Cover page
- Title
- Copyright
- Contents
- List of Figures
- List of Tables
- Series Editor’s Introduction
- Acknowledgments
- 1. Introduction
- 2. Important Background
- 3. Robustness, Resistance, and Ordinary Least Squares Regression
- 4. Robust Regression for the Linear Model
- 5. Standard Errors for Robust Regression
- 6. Influential Cases in Generalized Linear Models
- 7. Conclusions
- Appendix: Software Considerations for Robust Regression
- References
- Index
- About the Author