Multiple and Generalized Nonparametric Regression
eBook - ePub

Multiple and Generalized Nonparametric Regression

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Multiple and Generalized Nonparametric Regression

About this book

This book builds on John Fox?s previous volume in the QASS Series, Non Parametric Simple Regression. In this monograph readers learn to estimate and plot smooth functions when there are multiple independent variables. While regression analysis traces the dependence of the distribution of a response variable to see if it bears a particular (linear) relationship to one or more of the predictors, nonparametric regression analysis makes minimal assumptions about the form of relationship between the average response and the predictors. This makes nonparametric regression a more useful technique for analyzing data in which there are several predictors that may combine additively to influence the response. (An example could be something like birth order/gender/and temperament on achievement motivation).

Unfortunately, researchers have not had accessible information on nonparametric regression analysis, until now. Beginning with presentation of nonparametric regression based on dividing the data into bins and averaging the response values in each bin, Fox introduces readers to the techniques of kernel estimation, additive nonparametric regression, and the ways nonparametric regression can be employed to select transformations of the data preceding a linear least-squares fit. The book concludes with ways nonparametric regression can be generalized to logit, probit, and Poisson regression.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Multiple and Generalized Nonparametric Regression by John Fox in PDF and/or ePUB format, as well as other popular books in Social Sciences & Social Science Research & Methodology. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Cover page
  2. Title
  3. Copyright
  4. Contents
  5. Series Editor’s Introduction
  6. Acknowledgments
  7. 1. Introduction
  8. 2. Local Polynomial Multiple Regression
  9. 3. Additive Regression Models
  10. 4. Projection-Pursuit Regression
  11. 5. Regression Trees
  12. 6. Generalized Nonparametric Regression*
  13. 7. Concluding Remarks: Integrating Nonparametric Regression in Statistical Practice
  14. Notes
  15. References
  16. About the Author