
- 18 pages
- English
- PDF
- Available on iOS & Android
Data mining techniques in financial fraud detection
About this book
Seminar paper from the year 2016 in the subject Computer Science - General, grade: 1.7, Heilbronn University, language: English, abstract: In this seminar thesis you will get a view about the Data Mining techniques in financial fraud detection. Financial Fraud is taking a big issue in economical problem, which is still growing. So there is a big interest to detect fraud, but by large amounts of data, this is difficult. Therefore, many data mining techniques are repeatedly used to detect frauds in fraudulent activities. Majority of fraud area are Insurance, Banking, Health and Financial Statement Fraud. The most widely used data mining techniques are Support Vector Machines (SVM), Decision Trees (DT), Logistic Regression (LR), Naives Bayes, Bayesian Belief Network, Classification and Regression Tree (CART) etc. These techniques existed for many years and are used repeatedly to develop a fraud detection system or for analyze frauds.
Tools to learn more effectively

Saving Books

Keyword Search

Annotating Text

Listen to it instead
Information
Table of contents
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app