
eBook - ePub
LLMs in Production
Engineering AI Applications
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
LLMs in Production
Engineering AI Applications
About this book
Goes beyond academic discussions deeply into the applications layer of Foundation Models.
This practical book offers clear, example-rich explanations of how LLMs work, how you can interact with them, and how to integrate LLMs into your own applications. Find out what makes LLMs so different from traditional software and ML, discover best practices for working with them out of the lab, and dodge common pitfalls with experienced advice.
This book complements Sebastian Raschka’s Build a Large Language Model (From Scratch), which focuses on building and understanding LLMs from the ground up, by extending that foundation into real-world production—covering integration, cost-efficient training, and model evaluation.
In LLMs in Production you will:
• Grasp the fundamentals of LLMs and the technology behind them
• Evaluate when to use a premade LLM and when to build your own
• Efficiently scale up an ML platform to handle the needs of LLMs
• Train LLM foundation models and finetune an existing LLM
• Deploy LLMs to the cloud and edge devices using complex architectures like PEFT and LoRA
• Build applications leveraging the strengths of LLMs while mitigating their weaknesses
LLMs in Production delivers vital insights into delivering MLOps so you can easily and seamlessly guide one to production usage. Inside, you’ll find practical insights into everything from acquiring an LLM-suitable training dataset, building a platform, and compensating for their immense size. Plus, tips and tricks for prompt engineering, retraining and load testing, handling costs, and ensuring security.
Foreword by Joe Reis.
About the technology
Most business software is developed and improved iteratively, and can change significantly even after deployment. By contrast, because LLMs are expensive to create and difficult to modify, they require meticulous upfront planning, exacting data standards, and carefully-executed technical implementation. Integrating LLMs into production products impacts every aspect of your operations plan, including the application lifecycle, data pipeline, compute cost, security, and more. Get it wrong, and you may have a costly failure on your hands.
About the book
LLMs in Production teaches you how to develop an LLMOps plan that can take an AI app smoothly from design to delivery. You’ll learn techniques for preparing an LLM dataset, cost-efficient training hacks like LORA and RLHF, and industry benchmarks for model evaluation. Along the way, you’ll put your new skills to use in three exciting example projects: creating and training a custom LLM, building a VSCode AI coding extension, and deploying a small model to a Raspberry Pi.
What's inside
• Balancing cost and performance
• Retraining and load testing
• Optimizing models for commodity hardware
• Deploying on a Kubernetes cluster
About the reader
For data scientists and ML engineers who know Python and the basics of cloud deployment.
About the author
Christopher Brousseau and Matt Sharp are experienced engineers who have led numerous successful large scale LLM deployments.
This practical book offers clear, example-rich explanations of how LLMs work, how you can interact with them, and how to integrate LLMs into your own applications. Find out what makes LLMs so different from traditional software and ML, discover best practices for working with them out of the lab, and dodge common pitfalls with experienced advice.
This book complements Sebastian Raschka’s Build a Large Language Model (From Scratch), which focuses on building and understanding LLMs from the ground up, by extending that foundation into real-world production—covering integration, cost-efficient training, and model evaluation.
In LLMs in Production you will:
• Grasp the fundamentals of LLMs and the technology behind them
• Evaluate when to use a premade LLM and when to build your own
• Efficiently scale up an ML platform to handle the needs of LLMs
• Train LLM foundation models and finetune an existing LLM
• Deploy LLMs to the cloud and edge devices using complex architectures like PEFT and LoRA
• Build applications leveraging the strengths of LLMs while mitigating their weaknesses
LLMs in Production delivers vital insights into delivering MLOps so you can easily and seamlessly guide one to production usage. Inside, you’ll find practical insights into everything from acquiring an LLM-suitable training dataset, building a platform, and compensating for their immense size. Plus, tips and tricks for prompt engineering, retraining and load testing, handling costs, and ensuring security.
Foreword by Joe Reis.
About the technology
Most business software is developed and improved iteratively, and can change significantly even after deployment. By contrast, because LLMs are expensive to create and difficult to modify, they require meticulous upfront planning, exacting data standards, and carefully-executed technical implementation. Integrating LLMs into production products impacts every aspect of your operations plan, including the application lifecycle, data pipeline, compute cost, security, and more. Get it wrong, and you may have a costly failure on your hands.
About the book
LLMs in Production teaches you how to develop an LLMOps plan that can take an AI app smoothly from design to delivery. You’ll learn techniques for preparing an LLM dataset, cost-efficient training hacks like LORA and RLHF, and industry benchmarks for model evaluation. Along the way, you’ll put your new skills to use in three exciting example projects: creating and training a custom LLM, building a VSCode AI coding extension, and deploying a small model to a Raspberry Pi.
What's inside
• Balancing cost and performance
• Retraining and load testing
• Optimizing models for commodity hardware
• Deploying on a Kubernetes cluster
About the reader
For data scientists and ML engineers who know Python and the basics of cloud deployment.
About the author
Christopher Brousseau and Matt Sharp are experienced engineers who have led numerous successful large scale LLM deployments.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access LLMs in Production by Christopher Brousseau,Matt Sharp,Christopher Brousseau in PDF and/or ePUB format, as well as other popular books in Computer Science & Artificial Intelligence (AI) & Semantics. We have over one million books available in our catalogue for you to explore.
Information
Table of contents
- LLMs in Production
- copyright
- dedication
- contents
- foreword
- preface
- acknowledgments
- about the book
- about the authors
- about the cover illustration
- 1 Words’ awakening: Why large language models have captured attention
- 2 Large language models: A deep dive into language modeling
- 3 Large language model operations: Building a platform for LLMs
- 4 Data engineering for large language models: Setting up for success
- 5 Training large language models: How to generate the generator
- 6 Large language model services: A practical guide
- 7 Prompt engineering: Becoming an LLM whisperer
- 8 Large language model applications: Building an interactive experience
- 9 Creating an LLM project: Reimplementing Llama 3
- 10 Creating a coding copilot project: This would have helped you earlier
- 11 Deploying an LLM on a Raspberry Pi: How low can you go?
- 12 Production, an ever-changing landscape: Things are just getting started
- appendix A History of linguistics
- appendix B Reinforcement learning with human feedback
- appendix C Multimodal latent spaces
- index