
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Applied Machine Learning for Data Science Practitioners
About this book
A single-volume reference on data science techniques for evaluating and solving business problems using Applied Machine Learning (ML).
Applied Machine Learning for Data Science Practitioners offers a practical, step-by-step guide to building end-to-end ML solutions for real-world business challenges, empowering data science practitioners to make informed decisions and select the right techniques for any use case.
Unlike many data science books that focus on popular algorithms and coding, this book takes a holistic approach. It equips you with the knowledge to evaluate a range of techniques and algorithms. The book balances theoretical concepts with practical examples to illustrate key concepts, derive insights, and demonstrate applications. In addition to code snippets and reviewing output, the book provides guidance on interpreting results.
This book is an essential resource if you are looking to elevate your understanding of ML and your technical capabilities, combining theoretical and practical coding examples. A basic understanding of using data to solve business problems, high school-level math and statistics, and basic Python coding skills are assumed.
Written by a recognized data science expert, Applied Machine Learning for Data Science Practitioners covers essential topics, including:
- Data Science Fundamentals that provide you with an overview of core concepts, laying the foundation for understanding ML.
- Data Preparation covers the process of framing ML problems and preparing data and features for modeling.
- ML Problem Solving introduces you to a range of ML algorithms, including Regression, Classification, Ranking, Clustering, Patterns, Time Series, and Anomaly Detection.
- Model Optimization explores frameworks, decision trees, and ensemble methods to enhance performance and guide the selection of the most effective model.
- ML Ethics addresses ethical considerations, including fairness, accountability, transparency, and ethics.
- Model Deployment and Monitoring focuses on production deployment, performance monitoring, and adapting to model drift.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- COVER
- TABLE OF CONTENTS
- TITLE PAGE
- COPYRIGHT
- DEDICATION
- ABOUT THE AUTHOR
- HOW DO I USE THIS BOOK?
- FOREWORD
- PREFACE
- ACKNOWLEDGMENTS
- ABOUT THE COMPANION WEBSITE
- SECTION 1: Introduction to Machine Learning and Data Science
- SECTION 2: Data Preparation and Feature Engineering
- SECTION 3: Build, Train, or Estimate the ML Model
- SECTION 4: Model Performance Optimization
- SECTION 5: ML Ethics
- SECTION 6: Productionalize the Machine Learning Model
- INDEX
- END USER LICENSE AGREEMENT