Knowledge Representation and Inductive Reasoning using Conditional Logic and Sets of Ranking Functions
eBook - PDF

Knowledge Representation and Inductive Reasoning using Conditional Logic and Sets of Ranking Functions

  1. 186 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Knowledge Representation and Inductive Reasoning using Conditional Logic and Sets of Ranking Functions

About this book

A core problem in Artificial Intelligence is the modeling of human reasoning. Classic-logical approaches are too rigid for this task, as deductive inference yielding logically correct results is not appropriate in situations where conclusions must be drawn based on the incomplete or uncertain knowledge present in virtually all real world scenarios. Since there are no mathematically precise and generally accepted definitions for the notions of plausible or rational, the question of what a knowledge base consisting of uncertain rules entails has long been an issue in the area of knowledge representation and reasoning. Different nonmonotonic logics and various semantic frameworks and axiom systems have been developed to address this question. The main theme of this book, Knowledge Representation and Inductive Reasoning using Conditional Logic and Sets of Ranking Functions, is inductive reasoning from conditional knowledge bases. Using ordinal conditional functions as ranking models for conditional knowledge bases, the author studies inferences induced by individual ranking models as well as by sets of ranking models. He elaborates in detail the interrelationships among the resulting inference relations and shows their formal properties with respect to established inference axioms. Based on the introduction of a novel classification scheme for conditionals, he also addresses the question of how to realize and implement the entailment relations obtained. In this work, "Steven Kutsch convincingly presents his ideas, provides illustrating examples for them, rigorously defines the introduced concepts, formally proves all technical results, and fully implements every newly introduced inference method in an advanced Java library (…). He significantly advances the state of the art in this field." – Prof. Dr. Christoph Beierle of the FernUniversität in Hagen

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Knowledge Representation and Inductive Reasoning using Conditional Logic and Sets of Ranking Functions by S. Kutsch, Steven Kutsch in PDF and/or ePUB format, as well as other popular books in Computer Science & Artificial Intelligence (AI) & Semantics. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Title Page
  2. Contents
  3. Chapter 1. Introduction
  4. Chapter 2. Background
  5. Chapter 3. Inference Using Sets of Ranking Functions
  6. Chapter 4. Classification of Conditionals for Calculating Closures of Inference Relations
  7. Chapter 5. Inference Cores and Redundant Conditionals
  8. Chapter 6. Maximal Impacts for C-Inference
  9. Chapter 7. Compact Representations of Knowledge Bases for Optimising C-Inference
  10. Chapter 8. Formal Properties and Evaluation of Nonmonotonic Inference Relations
  11. Chapter 9. InfOCF: Implementing Inference Over Sets of Ranking Models
  12. Chapter 10. Conclusions, Open Questions and Final Remarks
  13. Bibliography