Graph Neural Networks in Action
eBook - ePub

Graph Neural Networks in Action

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Graph Neural Networks in Action

About this book

A hands-on guide to powerful graph-based deep learning models. Graph Neural Networks in Action teaches you to build cutting-edge graph neural networks for recommendation engines, molecular modeling, and more. This comprehensive guide contains coverage of the essential GNN libraries, including PyTorch Geometric, DeepGraph Library, and Alibaba's GraphScope for training at scale. In Graph Neural Networks in Action, you will learn how to: • Train and deploy a graph neural network
• Generate node embeddings
• Use GNNs at scale for very large datasets
• Build a graph data pipeline
• Create a graph data schema
• Understand the taxonomy of GNNs
• Manipulate graph data with NetworkX In Graph Neural Networks in Action you'll learn how to both design and train your models, and how to develop them into practical applications you can deploy to production. Go hands-on and explore relevant real-world projects as you dive into graph neural networks perfect for node prediction, link prediction, and graph classification. Foreword by Matthias Fey. About the technology Graphs are a natural way to model the relationships and hierarchies of real-world data. Graph neural networks (GNNs) optimize deep learning for highly-connected data such as in recommendation engines and social networks, along with specialized applications like molecular modeling for drug discovery. About the book Graph Neural Networks in Action teaches you how to analyze and make predictions on data structured as graphs. You'll work with graph convolutional networks, attention networks, and auto-encoders to take on tasks like node classification, link prediction, working with temporal data, and object classification. Along the way, you'll learn the best methods for training and deploying GNNs at scale—all clearly illustrated with well-annotated Python code! What's inside • Train and deploy a graph neural network
• Generate node embeddings
• Use GNNs for very large datasets
• Build a graph data pipeline About the reader For Python programmers familiar with machine learning and the basics of deep learning. About the author Keita Broadwater, PhD, MBA is a seasoned machine learning engineer. Namid Stillman, PhD is a research scientist and machine learning engineer with more than 20 peer-reviewed publications. Table of Contents Part 1
1 Discovering graph neural networks
2 Graph embeddings
Part 2
3 Graph convolutional networks and GraphSAGE
4 Graph attention networks
5 Graph autoencoders
Part 3
6 Dynamic graphs: Spatiotemporal GNNs
7 Learning and inference at scale
8 Considerations for GNN projects
A Discovering graphs
B Installing and configuring PyTorch Geometric

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Graph Neural Networks in Action by Keita Broadwater,Namid Stillman in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Manning
Year
2025
eBook ISBN
9781638357407
Edition
0

Table of contents

  1. Graph Neural Networks in Action
  2. copyright
  3. contents
  4. dedication
  5. foreword
  6. preface
  7. acknowledgments
  8. about this book
  9. about the authors
  10. about the cover illustration
  11. Part 1 First steps
  12. 1 Discovering graph neural networks
  13. 2 Graph embeddings
  14. Part 2 Graph neural networks
  15. 3 Graph convolutional networks and GraphSAGE
  16. 4 Graph attention networks
  17. 5 Graph autoencoders
  18. Part 3 Advanced topics
  19. 6 Dynamic graphs: Spatiotemporal GNNs
  20. 7 Learning and inference at scale
  21. 8 Considerations for GNN projects
  22. appendix A Discovering graphs
  23. appendix B Installing and configuring PyTorch Geometric
  24. further reading
  25. references