Java Data Analysis
eBook - ePub

Java Data Analysis

  1. 412 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Java Data Analysis

About this book

Get the most out of the popular Java libraries and tools to perform efficient data analysisAbout This Book• Get your basics right for data analysis with Java and make sense of your data through effective visualizations.• Use various Java APIs and tools such as Rapidminer and WEKA for effective data analysis and machine learning.• This is your companion to understanding and implementing a solid data analysis solution using JavaWho This Book Is ForIf you are a student or Java developer or a budding data scientist who wishes to learn the fundamentals of data analysis and learn to perform data analysis with Java, this book is for you. Some familiarity with elementary statistics and relational databases will be helpful but is not mandatory, to get the most out of this book. A firm understanding of Java is required.What You Will Learn• Develop Java programs that analyze data sets of nearly any size, including text• Implement important machine learning algorithms such as regression, classification, and clustering• Interface with and apply standard open source Java libraries and APIs to analyze and visualize data• Process data from both relational and non-relational databases and from time-series data• Employ Java tools to visualize data in various forms• Understand multimedia data analysis algorithms and implement them in Java.In DetailData analysis is a process of inspecting, cleansing, transforming, and modeling data with the aim of discovering useful information. Java is one of the most popular languages to perform your data analysis tasks.This book will help you learn the tools and techniques in Java to conduct data analysis without any hassle. After getting a quick overview of what data science is and the steps involved in the process, you'll learn the statistical data analysis techniques and implement them using the popular Java APIs and libraries. Through practical examples, you will also learn the machine learning concepts such as classification and regression.In the process, you'll familiarize yourself with tools such as Rapidminer and WEKA and see how these Java-based tools can be used effectively for analysis. You will also learn how to analyze text and other types of multimedia. Learn to work with relational, NoSQL, and time-series data. This book will also show you how you can utilize different Java-based libraries to create insightful and easy to understand plots and graphs.By the end of this book, you will have a solid understanding of the various data analysis techniques, and how to implement them using Java.Style and approachThe book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy-to-follow examples, this book will turn you into an ace data analyst in no time.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Java Data Analysis by John R. Hubbard in PDF and/or ePUB format, as well as other popular books in Computer Science & Data Modelling & Design. We have over one million books available in our catalogue for you to explore.

Java Data Analysis


Table of Contents

Java Data Analysis
Credits
About the Author
About the Reviewers
www.PacktPub.com
eBooks, discount offers, and more
Why subscribe?
Customer Feedback
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
1. Introduction to Data Analysis
Origins of data analysis
The scientific method
Actuarial science
Calculated by steam
A spectacular example
Herman Hollerith
ENIAC
VisiCalc
Data, information, and knowledge
Why Java?
Java Integrated Development Environments
Summary
2. Data Preprocessing
Data types
Variables
Data points and datasets
Null values
Relational database tables
Key fields
Key-value pairs
Hash tables
File formats
Microsoft Excel data
XML and JSON data
Generating test datasets
Metadata
Data cleaning
Data scaling
Data filtering
Sorting
Merging
Hashing
Summary
3. Data Visualization
Tables and graphs
Scatter plots
Line graphs
Bar charts
Histograms
Time series
Java implementation
Moving average
Data ranking
Frequency distributions
The normal distribution
A thought experiment
The exponential distribution
Java example
Summary
4. Statistics
Descriptive statistics
Random sampling
Random variables
Probability distributions
Cumulative distributions
The binomial distribution
Multivariate distributions
Conditional probability
The independence of probabilistic events
Contingency tables
Bayes' theorem
Covariance and correlation
The standard normal distribution
The central limit theorem
Confidence intervals
Hypothesis testing
Summary
5. Relational Databases
The relation data model
Relational databases
Foreign keys
Relational database design
Creating a database
SQL commands
Inserting data into the database
Database queries
SQL data types
JDBC
Using a JDBC PreparedStatement
Batch processing
Database views
Subqueries
Table indexes
Summary
6. Regression Analysis
Linear regression
Linear regression in Excel
Computing the regression coefficients
Variation statistics
Java implementation of linear regression
Anscombe's quartet
Polynomial regression
Multiple linear regression
The Apache Commons implementation
Curve fitting
Summary
7. Classification Analysis
Decision trees
What does entropy have to do with it?
The ID3 algorithm
Java Implementation of the ID3 algorithm
The Weka platform
The ARFF filetype for data
Java implementation with Weka
Bayesian classifiers
Java implementation with Weka
Support vector machine algorithms
Logistic regression
K-Nearest Neighbors
Fuzzy classification algorithms
Summary
8. Cluster Analysis
Measuring distances
The curse of dimensionality
Hierarchical clustering
Weka implementation
K-means clustering
K-medoids clustering
Affinity propagation clustering
Summary
9. Recommender Systems
Utility matrices
Similarity measures
Cosine similarity
A simple recommender system
Amazon's item-to-item collaborative filtering recommender
Implementing user ratings
Large sparse matrices
Using random access files
The Netflix prize
Summary
10. NoSQL Databases
The Map data structure
SQL versus NoSQL
The Mongo database system
The Library database
Java development with MongoDB
The MongoDB extension for geospatial databases
Indexing in MongoDB
Why NoSQL and why MongoDB...

Table of contents

  1. Java Data Analysis