
Tensor Calculus on Time Scales
Dynamic Calculus and Riemannian Spaces
- English
- ePUB (mobile friendly)
- Available on iOS & Android
About this book
In chapter 1 N dimensional spaces, contravariant vectors, covariant vectors and invariants are introduced. Some of their properties are deduced. Transformations of coordinates are investigated. Chapter 2 provides an informative introduction concerning the origin and nature of the tensor concept and the scope of the tensor calculus. The tensor algebra has been developed in an N dimensional space. Contravariant, covariant and mixed tensors of arbitrary order are defined. Some of their properties are deduced. The quotient law of the tensors is formulated and proved. Outer product and contractions are introduced. In Chapter 3, an N dimensional Riemannian space has been chosen for the development of tensor calculus. Metric and associated tensors are defines and some of their properties are explored. Affine and curvalinear coordinates are introduced. In Chapter 4, the Christoffel symbols of the first and second kinds are defined. Some of their basic properties are established. Covariant derivatives are introduced. The divergence, Laplace operator and curl are defined and explored. Intrinsic differentiation is studied. Chapter 5 is devoted to Riemann-Christoffel tensor, Ricci tensor, covariant curvature tensor, Riemann curvature and Einstein tensor and we deduct some of their properties. In Chapter 6, we represent some applications of tensor calculus in relativistic dynamics and relativistic kinematics. Lorentz transformations are derived on arbitrary time scales.
Velocity and acceleration vectors are defined and developed. Lagrange equations are deducted. Conservation laws for the energy momentum vector and angular momentum tensor are obtained.
The aim of this book is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques. The text material of this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Title Page
- Copyright
- Contents
- Frontmatter
- Contents
- 1āIntroduction
- 2āTensors
- 3āThe Riemann metric
- 4āCovariant differentiation
- 5āRiemannian geometry
- 6āRelativistic kinematics and dynamics
- Index
- Subject Index