NanoCulture
eBook - ePub

NanoCulture

Implications of the New Technoscience

  1. 258 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

NanoCulture

Implications of the New Technoscience

About this book

Nano denotes a billionth; a nanometer is a billionth of a meter. New instrumentation and techniques have for the first time made possible materials research and engineering at this level, the scale of individual molecules and atoms. Extraordinary visions of material abundance, unprecedented materials, and powerful engineering capabilities have marked the arrival of nanotechnology, as well as dystopian scenarios of self-replicating devices running amok and causing global catastrophe. Largely a future possibility rather than present actuality, nanotechnology has become a potent cultural signifier. NanoCulture explores the ways in which nanotechnology interacts with, and itself becomes, a cultural construction. Topics include the co-construction of nanoscience and science fiction; the influence of risk assessment and nanotechnology on the shapes of narratives; intersections between nanoscience as a writing practice and experimental literature at the limits of fabrication; the Alice-in-Wonderland metaphor for nanotechnology; and the effects of mediation on nanotechnology and electronic literature. NanoCulture is produced in collaboration with the nano art exhibit at the Los Angeles County Museum of Art (December 2003-September 2004), created by an interdisciplinary team led by media artist Victoria Vesna and nanoscientist James Gimzewski. NanoCulture is richly illustrated with images from the nano exhibit, which also provides the basis for an ethnographic analysis of collaborative process and an exploration of changing concepts of museum space.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access NanoCulture by N. Katherine Hayles in PDF and/or ePUB format, as well as other popular books in Biological Sciences & Essays on Science. We have over one million books available in our catalogue for you to explore.

Information

science & fiction
Nanotechnology in the Age of Posthuman Engineering Science Fiction as Science
COLIN MILBURN
Now nanotechnology had made nearly anything possible, and so the cultural role in deciding what should be done with it had become far more important than imagining what could be done with it.
Neal Stephenson, The Diamond Age (1995)
Long live the new flesh.
David Cronenberg’s Videodrome (1983)
The Technoscapes and Dreamscapes of Nanotechnology
K. Eric Drexler, pioneer and popularizer of the emerging science of nanotechnology, has summarized the ultimate goal of his field as “thorough and inexpensive control of the structure of matter.”1 Nanotechnology is the practical manipulation of atoms; it is engineering conducted on the molecular scale. Many scientists involved in this ambitious program envision building nanoscopic machines, often called “assemblers” or “nanobots,” that will be used to construct objects on an atom-by-atom basis. Modeled largely after biological “machines” like enzymes, ribosomes, and mitochondria—even the cell—these nanomachines will have specific purposes such as binding two chemical elements together or taking certain compounds apart, and will also be designed to replicate themselves so that the speed and scale of molecular manufacturing may be increased. Several different types of assemblers, or assemblers with multiple functions, will act together to engineer complex objects precise and reproducible down to every atomic variable. With its bold scheme to completely dominate materiality itself, nanotechnology has been prophesied to accomplish almost anything called for by human desires.
These prophesies have run the gamut from the mundane to the fantastic. Nanomachines will be able to disassemble any organic compound, such as wood, oil, or sewage, then restructure the constituent carbon atoms into diamond crystals of predetermined size and shape for numerous purposes, including structural materials of unprecedented strength. Nanomachines will be put into your carpet or clothing, programmed to constantly vaporize any dirt particles they encounter, keeping your house or your wardrobe perpetually clean. Nanomachines will quickly and cheaply fabricate furniture, or car engines, or nutritious food, from a soup of appropriate elements. Nanomachines will facilitate our exploration of space, synthesizing weightless lightsails to propel seamless spaceships throughout the universe. Nanomachines will repair damaged human cells on the molecular level, thus healing injury, curing disease, prolonging life, or perhaps annihilating death altogether.
Nanotechnology has been extensively discussed in these terms, but despite the fancifulness of certain nanoscenarios, it has become a robust and active science. Many universities, laboratories and companies around the world are investigating nanotech possibilities, constituting a dense discourse network—a technoscape—of individuals and institutions interested in the potential benefits of this nascent discipline.2 The U.S. National Science Foundation supports a National Nanofabrication Users Network to coordinate efforts at numerous sites,3 and the National Nanotechnology Initiative, proposed by the Clinton administration in 2000 and augmented by the Bush administration in 2001, offers funding and guidelines to promote nanotech breakthroughs.4 Arguably at the center of the technoscape is the Foresight Institute, a non-profit organization established in 1986 by Drexler and his wife, Christine Peterson, to foster thinking and research related to nanotechnology.5 Hosting conferences, sponsoring publications and awards, the Foresight Institute strives to be a nanotech mecca of sorts, anchoring the morass of nanotechnological endeavors currently spreading across the globe. Since Drexler first proposed a program for research in 1986 with the publication of his polemical Engines of Creation: The Coming Era of Nanotechnology,6 nanotechnology has gained notoriety as a visionary science and the technoscape has burgeoned.
Offering intellectual and commercial attractions, career opportunities and research agendas, nanotechnology foresees a technocultural revolution that will, in a very short time, profoundly alter human life as we know it. The ability to perform molecular surgery on our bodies and our environment will have irrevocable social, economic and epistemological effects; our relation to the world will change so utterly that even what it means to be human will seriously be challenged. But despite expanding interest in nanotech, despite proliferating ranks of researchers, despite international academic conferences, numerous doctoral dissertations and hundreds of publications, the promise of a world violently restructured by nanotechnology has yet to become reality.
Scientific journal articles reporting experimental achievements in nanotech, or reviewing the field, frequently speak of the technical advances still required for “the full potential of nanotechnology to be realized,”7 of steps toward fulfilling the “dream of creating useful machines the size of a virus,”8 of efforts that, if they “pan out, . . . could help researchers make everything from tiny pumps that release lifesaving drugs when needed to futuristic materials that heal themselves when damaged.”9 These texts—representative of the genre of popular and professional writing about nanotech that I will call “nanowriting”—incorporate individual experiments and accomplishments in nanoscience into a teleological narrative of “the evolution of nanotechnology,”10 a progressivist account of a scientific field in which the climax, the “full potential,” the “dream” of a nanotechnology capable of transforming garbage into gourmet meals and sending invisible surgeons through the bloodstream, is envisioned as already inevitable
Nanowritings convey “a sense of inevitability that [future nanotech successes] will come in time,” a sure faith that there “will come technologies that will be the best that they can ever be” and that “all manner of technologies will flow” from the current work of dedicated visionaries.11 Because the “development of nanotechnology appears inevitable,”12 nanowritings freely and ubiquitously import the nanofuture into the research of today, and the language used, as we will see, rewrites the advances of tomorrow into the present tense.13 Nanowritings speculate on scientific and technological discoveries that have not yet occurred, but they nonetheless deploy such fictionalized events to describe and to encourage preparation for the wide-scale consequences of this “seemingly inevitable technological revolution.”14
Even in the discipline’s first recognized technical journal article—which both proposed a new technology and inaugurated a new professional field—Drexler writes that the incipient engineering science of molecular nanotechnology has dramatic “implications for the present” as well as the “the long-range future of humanity.”15 Repeated throughout the technoscape, this narrative telos of nanotechnology— described as already given—is a vision of the “long-range future of humanity” utterly transfigured by present scientific developments. In other words, embedded within nanowriting is the implicit assumption that, even though the nanodreams have not yet come to fruition, nanotechnology has already enacted the transformation of the world.
Due to the tendency of nanowriting to speculate on the far future and to prognosticate its role in the radical metamorphosis of human life (coupled with the fact that nanotech research has yet to produce material counterparts to its adventurous mathematical models and computer simulations) many critics have claimed that nanotechnology is less a science and more a science fiction. For instance, David E. H. Jones, chemist at the University of Newcastle upon Tyne, insinuates that nanotech is not a “realistic” science, and that, because its aspirations seem to violate certain natural limits of physics, “nanotechnology need not be taken seriously. It will remain just another exhibit in the freak-show that is the boundless-optimism school of technical forecasting.”16 Gary Stix, staff writer for Scientific American and persistent critic of nanotech, has compared Drexler’s writings to the scientific romances of Jules Verne and H. G. Wells, suggesting that “real nanotechnology” is not to be found in these science fiction stories.17 Furthermore, Stix maintains that nanowriting, a “subgenre of science fiction,” damages the legitimacy of nanoscience in the public eye and that “[d]istinguishing between what’s real and what’s not” is essential for nanotech’s prosperity.18 Similarly, Stanford University biophysicist Steven M. Block has said that many nanoscientists, particularly Drexler and the “cult of futurists” involved with the Foresight Institute, have been too influenced by laughable science fiction expectations and have gotten ahead of themselves; he proposes that for “real science to proceed, nanotechnologists ought to distance themselves from the giggle factor.”19
Several critics have stated that direct atomic manipulation and engineering is not physically possible for thermodynamic or quantum mechanical reasons; others have suggested that, without experimental verification to support its outrageous notions and imaginary miraculous devices, nanotechnology is not scientifically valid; many more have dismissed the long-range predictions made by nanowriting on the grounds that such speculation obscures the reality of present-day research and the appreciable accomplishments within the field. These attacks have in common a strategic use of the term “real science” opposed to “science fiction,” and, whether rejecting the entire field as mere fantasy or attempting to extricate the scientific facts of nanotech from their science-fictional entanglements, charges of science-fictionality have repeatedly called the epistemological status of nanotechnology into question.20
Nanotechnology has responded to these attacks with various rhetorical strategies intended to distance its science from the negative associations of science fiction. However, I will be arguing that such strategies ultimately end up collapsing the distinction, reinforcing the science-fictional aspects of nanowriting at the same time as rescuing its scientific legitimacy. I hope to make clear that the scientific achievements of nanotechnology have been and will continue to be extraordinarily significant; but, without contradiction, nanotechnology is thoroughly science-fictional in imagining its own future, and the future of the world, as the product of scientific advances that have not yet occurred.
Science fiction, in Darko Suvin’s formalist account of the genre, is identified by the narratological deployment of a ‘”novum”—a scientific or technological “cognitive innovation” as extrapolation or deviation from present-day realities—that becomes “’totalizing’ in the sense that it [the novum] entails a change in the whole universe of the tale.”21 The diegesis of the science fiction story is an estranging “alternate reality logically necessitated by and proceeding from the narrative kernel of the novum.”22 Succinctly, science fiction assumes an element of transgression from contemporary scientific thought that in itself brings about the transformation of the world. It follows that nanowriting, positing the world turned upside down by the future advent of fully functional nanomachines, thereby falls into the domain of science fiction. Nanowriting performs radical ontological displacements within its texts and recreates the world atom by atom as a crucial component of its extrapolative scientific method; but by employing this method, nanowriting becomes a postmodern genre that draws from and contributes to the fabulations of science fiction.23 Science fiction is not a layer than can be stripped from nanoscience without loss, for it is the exclusive domain in which mature nanotechnology currently exists; it forms the horizon orienting the trajectory of much nanoscale research; and any eventual appearance of practical molecular manufacturing—transforming the world at a still unknown point in the future through a tremendous materialization of the fantastic—would remain marked with the semiotic residue of the science-fictional novum. Accordingly, I suggest that molecular nanotechnology should be viewed as simultaneously a science and a science fiction.
Jean Baudrillard has frequently written on the relationship of science to science fiction, contextualizing the dynamics of this relationship within his notion of hyperreality. Mapping onto “three orders of simulacra”24—the counterfeit, the reproduction, and the simulation—three orders of the speculative imaginary are described in his essay, “Simulacra and Science Fiction.” He writes, “To the first category [of simulacra] belongs the imagination of utopia. To the second corresponds science fiction, strictly speaking. To the third corresponds—is there an imaginary that might correspond to this order?”25 The question is open because the third-order imaginary is still in the process of becoming and is as yet unnamed. But within this imaginary, the boundary between the real and its representation deteriorates, and Baudrillard writes that, in the postmodern moment, “There is no real, there is no imaginary except at a certain distance. What happens when this distance, including that between the real and imaginary, tends to abolish itself, to be reabsorbed on behalf of the model?”26 The answer is the sedimentation of hyperreality, where the model becomes indistinguishable from the real, supplants the real, precedes the real, and finally is taken as more real than the real:
The models no longer constitute either transcendence or projection, they no longer constitute the imaginary in relation to the real, they are themselves an anticipation of the real, and thus leave no room for any sort of fictional anticipation—they are immanent, and thus leave no room for any kind of imaginary transcendence. The field opened is that of simulation in the cybernetic sense, that is, of the manipulation of these models at every level (scenarios, the setting up of simulated situations, etc.) but then nothing distinguishes this opera from the operation itself and the gestation of the real; there is no more fiction 27
In the dichotomy of science versus science fiction, the advent of third-order simulacra or imaginaries announces that science and science fiction are no longer separable. The borderline between them is deconstructed. In Baudrillard’s age of simulation, science and science fiction have become coterminous: “It is no longer possible to fabricate the unreal from the real, the imaginary from the givens of the real. The process will, rather, be the opposite: it will be to put decentered situations, models of simulation in place and to contrive to give them the feeling of the real, of the banal, of lived experience, to reinvent the real as fiction, precisely because it has disappeared from our life.”28 At the moment when science emerges from within science fiction and we can no longer tell the difference, the real has retreated and we are only left with the simulations of the hyperreal where “there is neither fiction nor reality anymore” and “science fiction in this sense is no longer anywhere, and it is everywhere.”29
The case of nanotechnology illustrates the hyperreal disappearance of the divide between science and science fiction. The terminology of ...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Contents
  5. Acknowledgements
  6. Preface
  7. Connecting the Quantum Dots: Nanotechscience and Culture
  8. art & science
  9. science & fiction
  10. science & literature
  11. Endnotes
  12. Bibliography
  13. Contributors