[PDF] Deep Learning By Example by Ahmed Menshawy | Perlego
Get access to over 650,000 titles
Start your free trial today and explore our endless library.
Start free trial
Join perlego now to get access to over 650,000 books
Join perlego now to get access to over 650,000 books
Join perlego now to get access to over 650,000 books
Deep Learning By Example
Deep Learning By Example

Deep Learning By Example

Ahmed Menshawy
Start free trial
shareBook
Share book
language
English
format
ePUB (mobile friendly)
availableOnMobile
Available on iOS & Android

Deep Learning By Example

Ahmed Menshawy
Book details
Table of contents

About This Book

Grasp the fundamental concepts of deep learning using Tensorflow in a hands-on manner

Key Features

  • Get a first-hand experience of the deep learning concepts and techniques with this easy-to-follow guide
  • Train different types of neural networks using Tensorflow for real-world problems in language processing, computer vision, transfer learning, and more
  • Designed for those who believe in the concept of 'learn by doing', this book is a perfect blend of theory and code examples

Book Description

Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic.

This book starts with a quick overview of the essential concepts of data science and machine learning which are required to get started with deep learning. It introduces you to Tensorflow, the most widely used machine learning library for training deep learning models. You will then work on your first deep learning problem by training a deep feed-forward neural network for digit classification, and move on to tackle other real-world problems in computer vision, language processing, sentiment analysis, and more. Advanced deep learning models such as generative adversarial networks and their applications are also covered in this book.

By the end of this book, you will have a solid understanding of all the essential concepts in deep learning. With the help of the examples and code provided in this book, you will be equipped to train your own deep learning models with more confidence.

What you will learn

  • Understand the fundamentals of deep learning and how it is different from machine learning
  • Get familiarized with Tensorflow, one of the most popular libraries for advanced machine learning
  • Increase the predictive power of your model using feature engineering
  • Understand the basics of deep learning by solving a digit classification problem of MNIST
  • Demonstrate face generation based on the CelebA database, a promising application of generative models
  • Apply deep learning to other domains like language modeling, sentiment analysis, and machine translation

Who this book is for

This book targets data scientists and machine learning developers who wish to get started with deep learning. If you know what deep learning is but are not quite sure of how to use it, this book will help you as well. An understanding of statistics and data science concepts is required. Some familiarity with Python programming will also be beneficial.

Read More

Information

Publisher
Packt Publishing
Year
2018
ISBN
9781788395762
Topic
Computer Science
Subtopic
Neural Networks
Edition
1

Table of contents